• Title/Summary/Keyword: Vapor phase growth

Search Result 270, Processing Time 0.025 seconds

Flow Visualization of Oscillation Characteristics of Liquid and Vapor Flow in the Oscillating Capillary Tube Heat Pipe

  • Kim, Jong-Soo;Kim, Ju-Won;Jung, Hyun-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1507-1519
    • /
    • 2003
  • The two-phase flow patterns for both non-loop and loop type oscillating capillary tube heat pipes (OCHPs) were presented in this study. The detailed flow patterns were recorded by a high-speed digital camera for each experimental condition to understand exactly the operation mechanism of the OCHP. The design and operation conditions of the OCHP such as turn number, working fluid, and heat flux were varied. The experimental results showed that the representative flow pattern in the evaporating section of the OCHP was the oscillation of liquid slugs and vapor plugs based on the generation and growth of bubbles by nucleate boiling. As the oscillation of liquid slugs and vapor plugs was very speedy, the flow pattern changed from the capillary slug flow to a pseudo slug flow near the annular flow. The flow of short vapor-liquid slug-train units was the flow pattern in the adiabatic section. In the condensing section, it was the oscillation of liquid slugs and vapor plugs and the circulation of working fluid. The oscillation flow in the loop type OCHP was more active than that in the non-loop type OCHP due to the circulation of working fluid in the OCHP. When the turn number of the OCHP was increased, the oscillation and circulation of working fluid was more active as well as forming the oscillation wave of long liquid slugs and vapor plugs in the OCHP. The oscillation flow of R-142b as the working fluid was more active than that of ethanol and the high efficiency of the heat transfer performance of R -142b was achieved.

Carbon Nanotube Growth on Invar Alloy using Coal Tar Pitch (콜타르피치를 이용한 Invar 합금 위 탄소나노튜브의 합성)

  • Kim, Joon-Woo;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.516-522
    • /
    • 2017
  • We report the growth of carbon nanotubes (CNT) on Invar-42 plates using coal tar pitch (CTP) by chemical vapor deposition (CVD) method. The solid phase CTP is used as an inexpensive carbon source since it produces a bunch of hydrocarbon gases such as $CH_4$ and other $C_xH_v$ by thermal decomposition over $450^{\circ}C$. The Invar-42 is a representative Ni-based ferrous alloy and can be used repetitively as a substrate for CNT growth because Ni and Fe are used as very active catalytic elements. We changed mixing ratio of carrier gases, argon and hydrogen, and temperature of growth region. It was found that the optimum gas ratio and temperature for high quality CNT growth are $Ar:H_2=400:400$ sccm and $1000^{\circ}C$, respectively. In addition, the carbon nanoball (CNB) was also obtained by just changing the mixing ratio to $Ar:H_2=100:600$ sccm. Finally, CTP can be employed as a versatile carbon source to produce various carbon-based nanomaterials, such as CNT and CNB.

Metal-Organic Vapor Phase Epitaxy IV. MOVPE and ALE Reaction Mechanisms (MOVPE 단결정층 성장법 IV. MOVPE 및 ALE 반응경로)

  • 정원국
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 1991
  • Understanding of the detailed reaction mechanisms during MOVPE and ALE is essential to further improve the properties of the grown crystals and the controllability of the growth parameters. The unified models for the detailed reaction paths are not available at this stage. The study, however, has been advanced to the extent that consensus on some of the reaction paths can be drawn from the scattered data. Metalakyls such as TMGa and TMIn seem to nearly fully decompose in the gas phase through homogeneous reaction at the typical MOVPE growth temperature. Hydrides such as AsH3 and PH3, on the contrary. seem to decompose heterogeneously onthe substrate surfaces as well as homogeneously in the gas phase. However, at lower temperatures, where ALE crystals are typically grown, the growth process is strongly dependent on the surface reactions. It seems that steric hindrance effects which the radicals reaching the substrate exhibit on the surface the growth rate a function of the metalalkyle supply durations. In addition, dydrogens released from hydrides seem to play an essential role in removing carbons leberated from the metalalkyls. High growth temperatures also seem to be effective in desorbing carbons from surface. The understanding of the reaction mechanisms was possible though diverse appraaches utilizing many ex-situ and in-situ diagnostic techniques and genuine experimental designs. It is the purpose of this paper to review and discuss many of these efforts and to draw some possible conclusions from them.

  • PDF

Metal-Organic Vapor Phase Epitaxy IV. MOVPE and ALE Reaction Mechanisms (MOVPE 단결정층 성장법 IV. MOVPE 및 ALE 반응경로)

  • 정원국
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.1.1-1.1
    • /
    • 1991
  • Understanding of the detailed reaction mechanisms during MOVPE and ALE is essential to further improve the properties of the grown crystals and the controllability of the growth parameters. The unified models for the detailed reaction paths are not available at this stage. The study, however, has been advanced to the extent that consensus on some of the reaction paths can be drawn from the scattered data. Metalakyls such as TMGa and TMIn seem to nearly fully decompose in the gas phase through homogeneous reaction at the typical MOVPE growth temperature. Hydrides such as AsH3 and PH3, on the contrary. seem to decompose heterogeneously onthe substrate surfaces as well as homogeneously in the gas phase. However, at lower temperatures, where ALE crystals are typically grown, the growth process is strongly dependent on the surface reactions. It seems that steric hindrance effects which the radicals reaching the substrate exhibit on the surface the growth rate a function of the metalalkyle supply durations. In addition, dydrogens released from hydrides seem to play an essential role in removing carbons leberated from the metalalkyls. High growth temperatures also seem to be effective in desorbing carbons from surface. The understanding of the reaction mechanisms was possible though diverse appraaches utilizing many ex-situ and in-situ diagnostic techniques and genuine experimental designs. It is the purpose of this paper to review and discuss many of these efforts and to draw some possible conclusions from them.

Hydrogen-Dependent Catalytic Growth of Amorphous-Phase Silicon Thin-Films by Hot-Wire Chemical Vapor Deposition (HWCVD를 이용한 Amorphous Si 박막 증착공정에서 수소량에 따른 박막성장 특성)

  • Park, Seungil;Ji, Hyung Yong;Kim, MyeongJun;Kim, Keunjoo
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • We investigated the growth mechanism of amorphous-phase Si thin films in order to improve the film characteristics and circumvent photo-degradation effects by implementation of hot-wire chemical vapor deposition. Amorphous silicon thin films grown in a silane/hydrogen mixture can be decomposed by a resistive heat filament. The structural properties were observed by Raman spectroscopy, FTIR, SEM, and TEM. The electrical properties of the films were measured by photo-conductivity, dark-conductivity, and photo-sensitivity. The contents of Si-H and $Si-H_n$ bonds were measured to be 19.79 and 9.96% respectively, at a hydrogen flow rate of 5.5 sccm, respectively. The thin film has photo-sensitivity of $2.2{\times}10^5$ without a crystalline volume fraction. The catalyst behavior of the hot-wire to decompose the chemical precursors by an electron tunneling effect depends strongly on the hydrogen mixture rate and an amorphous Si thin film is formed from atomic relaxation.

Vapor Phase Epitaxy of Magnesium Oxide on Si(001) Using a Single Precursor

  • Lee, Sun-Sook;Lee, Sung-Yong;Kim, Chang G.;Lee, Sang-Heon;Nah, Eun-Ju;Kim, Yunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.122-122
    • /
    • 2000
  • Magnesium oxide is thermodynamically very stable, has a low dielectric constant and a low refractive index, and has been widely used as substrate for growing various thin film materials, particulary oxides of the perovskite structure. There has been a considerable interest in integrating the physical properties of these oxides with semiconductor materials such as GaAs and Si. In this regard, it is considered very important to be able to grow MgO buffer layers epitaxially on the semiconductors. Various oxide films can then be grown on such buffer layers eliminating the need for using MgO single crystal substrates. Vapor phase epitaxy of magnesium oxide has been accomplished on Si(001) substrates in a high vacuum chamber using the single precursor methylmagnesium tert-butoxide in the temperature range 750-80$0^{\circ}C$. For the epitaxy of the MgO films, SiC buffer layers had to be grown on Si(001). The films were characterized by reflection high energy electron diffraction (RHEED) in situ in the growth chamber, and x-ray diffraction (XRD), x-ray pole figure analysis, scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS) after the growth.

  • PDF

Influence of gas flow on structural and optical properties of ZnO submicron particles grown on Au nano thin films by vapor phase transport (가스 유입량이 기상이동법으로 금 나노박막위에 성장된 산화아연 입자에 미치는 영향)

  • Kim, So-A-Ram;Nam, Gi-Ung;Kim, Min-Su;Park, Hyeong-Gil;Yun, Hyeon-Sik;Im, Jae-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.211-212
    • /
    • 2012
  • ZnO submicron particles were grown on Au-catalyzed Si substrate by a vapor phase transport (VPT) growth process under different mixture gas ratio at growth temperature of $900^{\circ}C$. The structural and optical properties of the ZnO submicron particles were investigated by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL). The ZnO submicron particles could be clustered with the $O_2/Ar$ mixture gas ratio(%) higher than 10%, and it was mainly determined by the gas ambient. Particularly, when the $O_2/Ar$ mixture gas ratio was 30%, it was observed the ZnO submicron particles with diameters in the range of 125 to 500 nm and the narrowest full width at half maximum (FWHM) of XRD and PL spectra with $0.121^{\circ}$ and 92 meV, respectively. It was found that the structural and optical properties of the ZnO submicron particles were improved with increasing the $O_2/Ar$ mixture gas ratio through the XRD and PL spectra.

  • PDF

Low-temperature phase stability and mechanical properties of $Y-Nb-TZP/Al_2O_3$ compoites ($Y-Nb-TZP/Al_2O_3$ 복합체의 저온 상안정성 및 기계적 특성)

  • 이득용;김대준;조경식;장주웅
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.634-639
    • /
    • 1998
  • $Y_2O_3$ and $Nb_2O_5$ co-doped zirconia composites containing 10~30 vol% $Al_2O_3$ with two different particle sizes were sintered for 5 h at $1550^{\circ}C$ to evaluate low-temperature phase stability of the composite using X-ray diffractometry after heat-treatments for 1000 h at $250^{\circ}C$ in air or for 5 h at $180^{\circ}C$ in 0.3 MPa $H_2O$ vapor pressure. No tetragonal to monoclinic phase transformation during degradation, so called enhanced low-temperature phase stability, was observed for all composites. It is concluded that Nb addition to the composite for the phase stability is more effective than $Al_2O_3$ addition. The optimum combination of strength (670 MPa) and fracture toughness ($7.1{\textrm} {MPam}^{1/2}$) were obtained for the composite containing 20 vol% of $Al_2O_3$ with 2.8 $\mu$m to 0.2 $\mu$m, the flexural strength increases but the fracture toughness decreases.

  • PDF

An experimental study of hot filament chemical vapor deposition for diamond films (HFCVD에 의한 다이아몬드 박막 증착에 관한 실험적 연구)

  • Kim, Yeong-Jae;Han, Dong-Cheol;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.563-572
    • /
    • 1998
  • An experimental study of hot filament chemical vapor deposition(HFCVD) has been carried out for the fabrication of diamond thin film. Of particular interest is the measurement of deposition uniformity on large substrates. Experimental apparatus including a vacuum chamber, heating elements, etc. has been designed and manufactured. Deposition profiles for different pretreatment powders and different flow rates have been measured in conjunction with the measurement of substrate temperature distribution on a large substrate surface. As the flow rate increases, deposition rate increases, however, the crystallinity becomes worse. Higher growth rate has been found on the region closer to the center location where substrate temperature is higher. The crystallinity has been improved as gas flow rate decreases. The growth rate and morphology of deposition were identified by SEM and the existence of diamond phase was proved by Raman spectroscopy.

Structural Characteristic of One Dimensional Single Crystalline of InN Nanowires (1차원 InN 단결정 나노선의 구조특성에 대한 고찰)

  • Byeun, Yun-Ki;Chung, Yong-Keun;Lee, Sang-Hoon;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.202-207
    • /
    • 2007
  • High-Quality 1-Dimensional InN single crystalline have been grown by Halide Vapor-Phase Epitaxy on the Au catalyst coated Si substrate using the vapor-liquid-solid growth mechanism. We have been grown 1-dimension InN nanowires having controlled the growth conditions for substrate temperature and gases flow rate. The grown InN nanowire of characteristics for morphologies, crystal structure, and element analysis were carried out by SEM, HR-TEM, and EDS respectively. And the defects of InN crystalline were analyzed by indexing of selective area diffraction pattern with attached HR-TEM. We have successfully obtained the defect-free 1-dimensional InN single crystalline nanowire at the atmosphere pressure.