• Title/Summary/Keyword: Vapor permeability

Search Result 233, Processing Time 0.026 seconds

Application of Edible Films to Food System Packaging (식품 포장재에 대한 가식성 필름의 응용성에 관한 연구)

  • Chun, Dong-Ho;Park, Jang-Woo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.6-12
    • /
    • 1999
  • This study was conducted to investigate the application of edible films to Raymyun soup packaging. The sorption isotherm curve and BET monolayer moisture content of Raymyun soup were estimated as a basic experiment. Also, the mechanical properties, water vapor permeability, and solubility of the films were investigated. Methylcellulose, sodium caseinate, and K-carrageenan films were used as edible films and glycerol and polyethylene glycol(MW 400) were used as plasticizers. In case tensile strength, methylcellulose films was 68.56 MPa and sodium caseinate film was 7.11 MPa. The elongations of sodium caseinate, methylcellulose, and K-carrageenan film were 115.41%, 23.79% and 0.60%, respectively. The water vapor permeabilties values of methylcellulose, sodium caseinate, and K-carrageenan film between 50% and 70% RH were $0.25-0.38ng{\cdot}m/m^2{\cdot}sec{\cdot}Pa,\;0.62-0.84ng{\cdot}m/m^2{\cdot}sec{\cdot}Pa\;and\;0.31-0.55ng{\cdot}m/m^2{\cdot}sec{\cdot}Pa$, respectively. For the solubility of films, sodium caseinate film showed the highest solubility and methylcellulose film showed the lowest solubility.

  • PDF

Characteristics of Low Molecular Weight Alginate Film Prepared with ${\gamma}$-irradiation (방사선 처리에 의해 제조한 저분자 알긴산 필름의 특성)

  • Ha, Sang-Hyung;Kim, Byung-Yong;Rhin, Jong-Whan;Baik, Moo-Yeol
    • Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.111-115
    • /
    • 2007
  • To modify the physical properties of alginate film, the gamma ray irradiation was performed, and alginate film properties such as elongation strength (ES), elongation rate (ER), water vapor permeability(WVP), and water solubility (WS) were measured. The film made from 1.75% alginate solution (w/w) with the addition of 2% CaCl$_2$ solution suggested a good application for a film preparation in that elongation strength(ES) increased 5 fold by CaCl$_2$ treatment and water vapor permeability was decreased by 17${\sim}$22%. A solid form of alginates were irradiated with Co$^{60}$ gamma rays in the dose range of 2 to 10 kGy to make a low molecular weight alginate film, and then the intrinsic viscosity and the molecular weight of alginates were measured. Increasing the dose range of 2 to 10 kGy produced lower intrinsic viscosity and lower molecular weight, causing the decrease in the ES and WS. However, ER increased four times compared to that of without gamma ray dose, which is an indication of the different properties of algiante film. WVP of the films did not show any significant change at different doses.

Sorption Characteristics of Binary Mixture of Corn Starch- Soy Protein Isolates in Plastic film Packaging (Plastic필름 포장에 따른 옥수수 전분과 분리 대두단백질의 이성분 혼합물의 흡습특성)

  • Kim, Duck-Woong;Woo, Sang-Gyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.3
    • /
    • pp.191-197
    • /
    • 1988
  • Sorption properties of corn starch(CS) and Soy protein isolates(SPI) in plastic films packaging were investigates for binary system. The mixture were sealed in plastic films of low density polyethylene(LDPE), oriented polypropylene(OPP) and LDPE/OPP coated film and packaging effect on the changes of moisture sorption during storage at $40^{\circ}C$ were studied. The following results were obtained. The water vapor permeability of material films was $32.6g/m^2/24hrs(below\;g)$ for 0.02mm LDPE film, 14.01g for 0.04mm LDPE film, 7.30g for 0.02mm OPP film, 3.37g for 0.04mm OPP film and 4.869 for 0.02mm LDPE/0.02 mm OPP confine film at $40^{\cire}C$ 90%RH, therefore the OPP film was more effective than LDPE film on the resistance of relative humidity. And the OPP film packaging sealed mixture of food samples was also more elective then LDPE film, having same thickness for increase of water vapor permeability during storage at $40^{\cire}C$. A general increase in sorption rate was found more in SPI than CS in the packaged mixtures.

  • PDF

Comport Sensation of Blue Jeans depending on Fiber Contents (청바지의 소재별 쾌적감에 관한 연구)

  • 홍문경;이미식;권계화;전정애
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.2
    • /
    • pp.237-248
    • /
    • 2001
  • The purpose of this study was to compare the comfort sensation depending on four different kinds of denim blue jeans: cotton, cotton/tencel, tencel, cotton/pp. The objective and subjective experiments were conducted to measure the comfort of blue jeans. To investigate the objective comfort, physical properties related to thermal insulation, moisture properties and hand were measured. For subjective comfort measurement, 5 healthy female college students were taken as subjects. The outcomes of the experiments are as follows: The higher the air permeability and bulk density of the denim, the lower the thermal insulation, the thicker the denim, the higher the thermal insulation. Tencel blending denim showed the higher bulk density, the lower air contents, and consequently the lower thermal insulation than the other denims. Tencel showed the highest moisture regain, and cotton/tencel blend showed the highest water vapor permeability. Tencel denim had relatively better flexibility, shape stability and elastic recovery than the other denims. The total hand values of the denims by KES-FB system were not significantly different. Cotton and cotton/pp denims raised the subjects body temperature after excercise more than tencel or cotton/tencel denims. Average skin temperature was found to have a correlation with micro climate temperature and micro climate humidity. The correlation coefficients were 0.749 and 0.767, respectively. However, average skin temperatures were not significantly different among the materials. Pulse rate was found to be the highest when wearing cotton/pp and the lowest in case of cotton/tencel denim. The energy was consumed in order of cotton>cotton/pp>tencel>cotton/tencel. There was no significant difference in preference before excercise, but, after the excercise, the order of preference changed as the following; cotton/tencel>tencel>cotton/pp>cotton.

  • PDF

Performance Evaluation of Protective Clothing Materials for Welding in a Hazardous Shipbuilding Industry Work Environment (조선업의 유해 작업환경 대응을 위한 용접 보호복 소재의 성능평가 연구)

  • Kim, Min Young;Bae, Hyun Sook
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.452-460
    • /
    • 2013
  • This study conducted a performance evaluation of protective clothing materials used for welding in a hazardous shipbuilding industry work environment. The welding process was selected as the one that most requires industrial protective clothing according to work environment characteristics. Flame proofing and convection heat protection performance (HTI) in the heat transfer characteristics of protective clothing material were indicated in the order of SW1(Oxidant carbon)>SW2(silica coated Oxidant carbon)>SW4(Oxidant carbon/p-aramid)>SW3(flame proofing cotton). However, radiant heat protection performance (RHTI) and the heat transfer factor (TF) were indicated in the order of SW1>SW4>SW2>SW3 and showed different patterns from the convection heat protection performance. SW1 showed superior air permeability and water vapor permeability. The tensile strength and tear strength of welding protective clothing material were indicated in the order of SW4>SW2>SW3>SW1 and showed that a blend fabric of p-aramid was the most superior for the mechanical properties of SW4. SW1 had excellent heat transfer properties in yet met the minimum performance requirements of tensile strength proved to be inappropriate as being a material for welding protective clothing. The abrasion resistance of woven fabric proved superior compared to nonwoven fabric; however, seam strength and dimensional change both met the minimum performance requirements and indicated that all samples appeared non-hazardous. Finally, oxidant carbon/p-aramid blend fabric appeared appropriate as a protective clothing materials for welding.

Prediction of Shelf-Life of Chewing Gum Based on Moisture Gain and Loss (흡탈습량에 의한 츄잉껌의 Shelf-Life 예측)

  • Chung, Duk-Ho;Lee, Yoon-Hyung;Yoo, Myung-Shik;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.122-126
    • /
    • 1992
  • The shelf-life of wrapped chewing gum(7 sticks) under the climate condition of Seoul was predicted by using moisture gain equation to reach safe moisture limits of 3.16% (dry basis). The overall water vapor permeability of multilayer packaging material was about 0.00045g water/pack day mmHg. The water activity of chewing gum at any temperature was predictable using Clausius-Clapeyron equation. The most significant loss of shelf-life was occurred between June and July, and most products reached the end of shelf-life at July and August. The product which were made in October and November had the longest shelf-life as seven months.

  • PDF

Study of Hydration Reaction Characteristics of Inorganic Salts for Chemical Cold Storage and Method of Enhancement of Heat and Mass Transfer (화학축냉용 무기염들의 수화반응 및 열 및 물질전달 향상방안)

  • 김상욱;한종훈;황용준;이건홍
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.185-191
    • /
    • 1999
  • An air-conditioning system based on the chemical heat storage principle was considered. $H_2O$ was chosen as the reaction gas and the working fluid as well. Na$_2$S, CaCl$_2$, MnCl$_2$, BaCl$_2$, MgCl$_2$, Fe$_2$(SO$_4$)$_3$ and MnSO$_4$ were tested as the solid reactants by using Cahn pressure balance. Na$_2$S was superior to other salts in respect of high capability of absorption of water gas, 5 moles of $H_2O$ per unit mole of Na$_2$S, and adequate temperature of adsorption, $65^{\circ}C$ at 7torr, and of desorption, 13$0^{\circ}C$ at 76torr. Clausius-Clapeyron diagram of Na$_2$S was obtained via adsorption experiments at several vapor pressures of water gas. To enhance heat and mass transfer characteristics, usually below 1W/m K, of the reactor bed of general adsorption systems, expanded graphite block was adapted as the support of Na$_2$S salt. Expanded graphite blocks had thermal conductivity values of 20~80W/mK with respect to 100~400kg/㎥ of block bulk density. Permeability values of expanded graphite blocks were 10$^{-13}$ ~ 10$^{-14}$ $m^2$ with respect to 100~300kg/㎥ of block bulk density showing highly decreasing values of permeability, below 10$^{-l4}$$m^2$, in the range of above 150kg/㎥ of block bulk density.y.

  • PDF

Preparation of Asymmetric Membranes by Addition of Nonsolvent (비용매 첨가제를 이용한 비대칭막의 제조)

  • Kim, Nowon
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.32-41
    • /
    • 2015
  • High performance polysulfone microfiltration membranes with a high were successfully prepared by vapor induced phase separation (VIPS) coupled with non-solvent induced phase separation (NIPS) process. Asymmetric Membranes were prepared with PSF/DMF/PVP/PEG/DMSO/water mixed solutions and water/IPA coagulant. PSF, DMF, PVP, PEG, DMSO, water was used as a membrane polymer, a solvent, a hydrophilic polymer additive, a polar protic liquid polymer, a polar aprotic nonsolvent, and a polar protic nonsolvent in the casting solution, respectively. The addition of polar aprotic nonsolvents, and polar protic nonsolvents is a convenient and effective method to control membrane structure. In order to control the morphology of polymeric membranes, the spontaneous emulsification induced by drawing water vapor into the exposed casting solution surface has been used. Control of the internal morphology of polymeric membranes by using mixed coagulation solution such as water and IPA is discussed in the present work. The pure water permeability, pore size distribution, surface hydrophilicity and membrane morphology were investigated. Due to the addition of DMSO to casting solution, the mean pore size increased almost $0.2{\mu}m$ and the water flux increased about 1000-1800 LMH.

Study on the Fabric Trend in Hi-Tech Functional Active Sportswear (하이테크 기능성 액티브 스포츠웨어의 소재경향에 관한 연구)

  • Baik Cheon-Eui;Kim So-Young
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.7 no.1
    • /
    • pp.55-63
    • /
    • 2005
  • The outcome of modem sports events are reliant on not only the athletic ability and technology of individual players but their sportswear proterties. State-of-the-Hitech sportswear has started to be introduced in the 1950s, and in addition to the athletic capability of players, sportswear is one of the primary factors to affect the results of sports games, as a wide variety of Hi-Tech functional materials have come out since the 1990s. The purpose of this study was to development into the concept of active sportswear, to sort out hitech functional product lines in this field, to look into sports stars and Hi-Tech functional sports brands, and finally to identify the major characteristics of recent active sportswear. The result of this study were as follows: 1. There were largely four characteristics in recent functional sportswear materials: fast-drying cooling, minimized resistance, ultralight comfortableness, and water vapor permeable/waterproof function. 2. Besides the athletic capability and technology of players, Hi-Tech functional products are one of the major factors to determine the outcome of modem sports events. Functional synthetic fiber is preferred, instead of cotton, since the former is easier to manage and retains humidity better. 3. The major features of recent trend in active sportswear products are, functional, diversity and value. That is, those products are functional, since they are easy to manage and retain proper humidity, and they are for multipurpose, since they are fashionable and practical at the same time. And they are valuable, being expensive but appropriate for the movement of the body and having a high quality.

  • PDF

Study of Development of Selective Removal Adsorption Ion Exchange Resin Materials for Fabricated with Chemical-biological Cloth by QFD (QFD 기법을 이용한 특정 유해가스 노출제어 이온선택성 보호복 소재개발연구)

  • Song, Hwa Seon;Koo, Il Seob;Kim, In Sik
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.359-372
    • /
    • 2015
  • Purpose: Through studying the expert's and non-experts panel responses to the questions regarding the attributes of chemical-biological protection cloth quality in terms of the levels of customer demand and technical factors has been studied. We are applied to a QFD matrix with find out the relationship between the selective removal efficiency of chemical-biological cloth and the guidelines of technical approach. Methods: We fabricated several composite of ion-exchange resins with selectively permeable performance designed to facilities water vapor transport and selective adsorption of the harmful gases. With these materials, we characterized on the selectively permeable performance to identify ion-exchange resin with chemical-biological protective cloth. Results: Results showed that ion exchange materials possessed performance with selectively efficiencies as NH3, SOx, NOx and HCl gas. The selective adsorption amount of ammonia and hydrogen gases were $90-80{\mu}g/g$ with TRILITE SCR-BH sulfonated ion exchange resin. The PP non-woven/ion exchange resin adsorbent materials possessed performance with water vapor permeability were 1,100-1,350 g/m2/day, it's was two times high value compare with activated carbon. With these materials, we characterized selectively removal efficiency to identify new ion-exchange material with chemical-biological protective capability. Conclusion: This study shows that a QFD aids in deciding with of the adsorption parameters to optimized with chemical-biological protection cloth manufacturing.