• Title/Summary/Keyword: Vapor injection

Search Result 180, Processing Time 0.033 seconds

LPG Spray Characteristics in a Multi-hole Injector for Gasoline Direct Injection (분사조건에 따른 가솔린 직접분사용 다공 분사기에서의 LPG 분무특성)

  • Jung, Jinyoung;Oh, Heechang;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Liquefied petroleum gas (LPG) is regarded as an alternative fuel for spark ignition engine due to similar or even higher octane number. In addition, LPG has better fuel characteristics including high vaporization characteristic and low carbon/hydrogen ratio leading to a reduction in carbon dioxide emission. Recently, development of LPG direct injection system started to improve performance of vehicles fuelled with LPG. However, spray characteristics of LPG were not well understood, which is should be known to develop injector for LPG direct injection engines. In this study, effects of operation condition including ambient pressure, temperature, and injection pressure on spray properties of n-butane were evaluated and compared to gasoline in a multi-hole injector. As general characteristics of both fuels, spray penetration becomes smaller with an increase of ambient pressure as well as a reduction in the injection pressure. However, it is found that evaporation of n-butane was faster compared to gasoline under all experimental condition. As a result, spray penetration of n-butane was shorter than that of gasoline. This result was due to higher vapor pressure and lower boiling point of n-butane. On the other hand, spray angle of both fuels do not vary much except under high ambient temperature conditions. Furthermore, spray shape of n-butane spray becomes completely different from that of gasoline at high ambient temperature conditions due to flash boiling of n-butane.

A review of elemental mercury removal processing

  • Bae, Kyong-Min;Kim, Byung-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.121-130
    • /
    • 2011
  • Public concern has recently increased over the potential risk of toxic elements emitted from anthropogenic sources. Among these, mercury has drawn special attention owing to its increasing level of bioaccumulation in the environment and in the food chain, with potential risks for human health. This paper presents an overview of research related to mercury control technology and identifies areas requiring additional research and development. It critically reviews measured mercury emissions progress in the development of promising control technologies, including catalytic oxidation, sorbent injection, photochemistry oxidation, and air pollution control devices.

Synthesis and Control of Ultrafine Particles by Ion-Injection in Furnace (반응로내 이온주입에 의한 초미세입자의 합성 및 응집제어)

  • Yoon, J.U.;Kim, Y.W.;Ahn, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.91-96
    • /
    • 2001
  • Ultrafine particles have been widely used in many high technology industrial areas. The spherical nonagglomerated and uniform nanometer-size $SiO_{2}$ particles are synthesized by the injection of TEOS vapor, ions and reaction gas in furnace. Ions were generated by Corona discharge electrode and these ions charge $SiO_{2}$ particles. As a result, spherical, nonagglomerated and ultrafine particles are generated in various conditions, it's morphology, charging portion and size distribution are examined by using TEM, ESP and SMPS. As the applied voltage of electrode changes from 0 kV to 5.0 kV, it is observed that the mean diameter of $SiO_{2}$ particle decreases from 94 nm to 42 nm.

  • PDF

A study on the spray characteristics of hydrocarbon-fuels with viscosity variations (점도변화에 따른 탄화수소계 연료의 분무특성에 관한 연구)

  • Lee, Yong-Il;Han, Jae-Seob
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.23-31
    • /
    • 2001
  • An experimental study was carried out to understand the spray characteristics of three kinds(kerosene, heating oil & diesel) of hydrocarbon-fuels. Fuel temperature and injection pressure were main variables in the experiment. Fuel Temperature was changed to obtain various levels of fuel viscosity. Spray angle and spray length were measured by using LVS(Laser Vapor Screen) photographs. 1D PDPA system was used to measure droplet size & droplet velocity. In room temperature, spray characteristics of three kinds of fuels were good, especially in case the fuel injection pressure was more than $6Kgf/cm^2$ It was also found that spray characteristics were poor in case fuel kinematic viscosity was more than 5cSt.

  • PDF

Schlieren, Shadowgraph, Mie-scattering Visualization of Diesel and Gasoline Sprays under GDCI Engine Low Load Condition (가솔린 직분식 압축착화 엔진 저부하 영역 디젤/가솔린 분무의 쉴리렌, 쉐도우그래프, 미산란법적 가시화)

  • Park, Stephen Sungsan;Kim, Donghoon;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • In this study, three visualization methods, Schlieren, Shadowgraph, and Mie-scattering, were applied to compare diesel and gasoline spray structures. Fuels were injected into a high pressure/high temperature constant volume chamber under the same ambient pressure and temperature condition of low load in gasoline direct injection compression ignition (GDCI) engine. Two injection pressures (40 and 80 MPa), two ambient pressures (4.2 and 1.7 MPa), and two ambient temperatures (908 and 677 K) were use. The images from the different methods were overlapped to show liquid and vapor phases more clearly. It was found that the gasoline fuel is more appropriate to form a lean mixture.

A New Fabrication Method of Aluminum Nanotube Using Anodic Porous Alumina Film as a Template

  • Sung, Dae Dong;Choo, Myung Sook;Noh, Ji Seok;Chin, Won Bai;Yang, Woo Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1159-1163
    • /
    • 2006
  • Aluminum nanotube has been fabricated by a physical vapor deposition/atmospheric pressure injection using an anodic porous alumina film as a template. The pore external-, and inside diameters and the length of the aluminum nanotubes fabricated by this method are 60 nm, 35 nm and 2 $\mu$m, respectively. The structure of the fabricated aluminum nanotubes was examined by a kind of chemical treatment as extraction of copper on the cross-sectional area of these aluminum tubes in a mixed solution of $CuCl_2$ and HCl by difference of ionization tendency between aluminum and copper. The composition of the aluminum nanotube was identified by the two dimensional Hybrid Plasma Equipment Model (HPEM) employing the inductively coupled plasma.

Numerical Modeling for GaN Deposition by MOCVD: Effects of the Gas Inlet

  • Yang, Wonkyun;Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.139-144
    • /
    • 2014
  • GaN deposition equipment and processes for the fabrication of white LEDs (Light Emitting Diode) using MOCVD (Metal Organic Chemical Vapor Deposition) were numerically modeled to analyze the effects of a reactive gas introduction strategy. The source gases, TMGa and $NH_3$, were injected from a shower head at the top of the chamber; the carrier gases, $H_2$ or $N_2$, were introduced using two types of injection structures: vertical and horizontal. Wafers sat on the holder at a radial distance between 100 mm and 150 mm. The non-uniformity of the deposition rates for vertical and horizontal injection were 4.3% and 3.1%, respectively. In the case of using $H_2$ as a carrier gas instead of $N_2$, the uniform deposition zone was increased by 20%.

Implementation of Differential Absorption LIDAR (DIAL) for Molecular Iodine Measurements Using Injection-Seeded Laser

  • Choi, Sungchul;Baik, Sunghoon;Park, Seungkyu;Park, Nakgyu;Kim, Dukhyeon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.325-330
    • /
    • 2012
  • Differential absorption LIDAR (DIAL) is frequently used for atmospheric gas monitoring to detect impurities such as nitrogen dioxide, sulfur dioxide, iodine, and ozone. However, large differences in the on- and off-line laser wavelengths can cause serious errors owing to differential aerosol scattering. To resolve this problem, we have developed a new DIAL system for iodine vapor measurements in particular. The suggested DIAL system uses only one laser under seeded and unseeded conditions. To check the detection-sensitivity and error effects, we compared the results from a system using two seeded lasers with those from a system using a seeded and an unseeded laser. We demonstrate that the iodine concentration sensitivity of our system is improved in comparison to the conventional two seeded or two unseeded laser combinations.

Innovative Approach to Sintering Aluminum and Aluminum Alloy Powders for Rapid Manufacturing Applications

  • Liu, Jianxin;Kuhn, Howard A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.246-247
    • /
    • 2006
  • A new approach to sintering loose packed, coarse aluminum alloy powder to full or near full density is presented. A controlled amount of water vapor is introduced into the sintering atmosphere, which disru pts the oxide film and allows metallurgical contact between particles. In addition, supersolidus liquid phase sintering is used to sinter the part to full density. Since the method is particularly applicable to uncompacted powders, it is potentially useful for sintering aluminum powder preforms manufactured by 3DPrinting and powder injection molding.

  • PDF