Browse > Article
http://dx.doi.org/10.5012/bkcs.2006.27.8.1159

A New Fabrication Method of Aluminum Nanotube Using Anodic Porous Alumina Film as a Template  

Sung, Dae Dong (Department of Chemistry, Dong-A University)
Choo, Myung Sook (Department of Physics, Dong-A University)
Noh, Ji Seok (Department of Physics, Dong-A University)
Chin, Won Bai (Department of Physics, Dong-A University)
Yang, Woo Sung (Department of Chemistry, Dong-A University)
Publication Information
Abstract
Aluminum nanotube has been fabricated by a physical vapor deposition/atmospheric pressure injection using an anodic porous alumina film as a template. The pore external-, and inside diameters and the length of the aluminum nanotubes fabricated by this method are 60 nm, 35 nm and 2 $\mu$m, respectively. The structure of the fabricated aluminum nanotubes was examined by a kind of chemical treatment as extraction of copper on the cross-sectional area of these aluminum tubes in a mixed solution of $CuCl_2$ and HCl by difference of ionization tendency between aluminum and copper. The composition of the aluminum nanotube was identified by the two dimensional Hybrid Plasma Equipment Model (HPEM) employing the inductively coupled plasma.
Keywords
Aluminum nanotube; Porous alumina film; Atmospheric pressure injection; HPEM;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Asoh, H.; Nishio, K.; Nakao, M.; Tamamura, T.; Masuda, H. J. Electrochem. Soc. 2001, 148, 152   DOI   ScienceOn
2 Foss, C. A.; Hornyak Jr., G. L.; Stockert, J. A.; Martin, C. R. J. Phys. Chem. 1992, 96, 7497   DOI
3 Kong, J.; Zhou, C.; Morpurgo, A.; Soh, H.; Marcus, C.; Quate, C.; Dai, H. Appl. Phys. 1999, A69, 305
4 Huber, C. A.; Huber, T. E.; Sadoqi, M.; Lubin, J. A.; Manalis, S.; Prater, C. B. Science 1994, 263, 800   DOI   ScienceOn
5 Kyotani, T.; Tsai, L.-f.; Tomita, A. Chem. Mater. 1996, 8, 2109   DOI   ScienceOn
6 Kong, J.; Soh, H.; Cassell, A.; Quate, C. F.; Dai, H. Nature 1998, 395, 878   DOI   ScienceOn
7 Spohr, R. U. S. Patent 4 338 164, (1982)
8 Randal, J. N.; Reed, M. A.; Frazier, G. A. J. Vac. Sci. Technol. 1989, B7(6), 1398
9 Oro, J. A.; Wolfe, J. C. J. Vac. Sci. Technol. 1983, B1(4), 1088
10 Lu, J.; Kushner, M. J. J. Vac. Sci. Technol. A 2001, 19(5), 2652   DOI   ScienceOn
11 Rossnagel, S. M. J. Vac. Sci. Technol. B 1998, 16(5), 2585   DOI   ScienceOn
12 Zhang, Z.; Ying, J. Y.; Dresselhaus, M. S. J. Mater. Res. 1998, 13, 1745   DOI   ScienceOn
13 Nano and Micro Engineered Membrane Technology; Rijn, van C. J. M., Ed.; Elsevier: Amsterdam, 2004; p 322
14 Wallraff, G. M.; Hinsberg, W. D. Chem. Rev. 1999, 99, 1801   DOI   ScienceOn
15 Craighead, H. G. J. Appl. Phys. 1984, 55, 4430   DOI   ScienceOn
16 Majumdar, A. P.; Oden, I.; Carrejo, J. P.; Nagahara, L. A.; Graham, J. J.; Alexander, J. Appl. Phys. Lett. 1992, 61, 2293   DOI
17 Stroscio, J. A.; Eigler, D. M. Science 1991, 254, 1319   DOI   ScienceOn
18 Liang, W.; Martin, C. R. J. Am. Chem. Soc. 1990, 112, 9666   DOI
19 Martin, C. R. Science 1994, 266, 1961   DOI   ScienceOn
20 Brumilk, C. J.; Martin, C. R. J. Am. Chem. Soc. 1991, 113, 3174   DOI
21 Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. Nature 1998, 391, 775   DOI   ScienceOn
22 Tonucci, R. J.; Justus, B. L.; Campillo, A. J.; Ford, C. E. Science 1992, 258, 783   DOI   ScienceOn
23 Wu, C.-G.; Bein, T. Science 1994, 264, 1757   DOI   ScienceOn
24 Brumilk, C. J.; Menon, V. P.; Martin, C. R. J. Mater. Res. 1994, 9, 1174   DOI
25 Masuda, H.; Kenji, Y.; Nishio, K. Adv. Mater. 2000, 12, 1031   DOI   ScienceOn
26 Suh, J. S.; Lee, J. S. Appl. Phys. Lett. 1999, 75, 2047   DOI
27 Jagminiene, A.; Valincius, G.; Riaukaie, A.; Jagminas, A. J. Crystal Growth 2005, 274, 622   DOI   ScienceOn
28 Papadopoulos, J.; Li, C.; Xu, J. M.; Moskovits, M. Appl. Phys. Lett. 1999, 75, 367   DOI
29 Ozin, G. A. Adv. Mater. 1992, 4, 612   DOI
30 Engineering a Small World: From Atomic Manipulation to Microfabrication, The Special Section, Science 1991, 254, 1300-1342   DOI
31 Masuda, H.; Satoh, M. Jpn. J. Appl. Phys. 1996, 35, L126   DOI   ScienceOn
32 Parthasarathy, R. V.; Phani, K. L. N.; Martin, C. R. Adv. Mater. 1995, 7, 896   DOI
33 Smith, H. I.; Schattenburg, M. L. IBM J. Res. Develop. 1993, 37, 319
34 Klein, J. D.; Herick II, R. D.; Palmer, D.; Sailor, M. J.; Brumlik, C. J.; Martin, C. R. Chem. Mater. 1993, 5, 902   DOI   ScienceOn
35 Lin, Y. M.; Cronin, S. B.; Ying, J. Y.; Dresselhaus, M. S.; Heremans, J. P. Appl. Phys. Lett. 2000, 76, 3944   DOI   ScienceOn
36 Masuda, H.; Fukuda, K. Science 1995, 268, 1466   DOI   ScienceOn
37 Wang, Z. L.; Liu, Y.; Zhang, Z. Handbook of Nanophase and Nanostructured Materials; Kluwer, Academic Press: New York, 2003; p 107
38 Martin, C. R.; Nishizawa, M.; Jirage, K.; Kang, M.; Lee, S. B. Adv. Mater. 2001, 13, 2008
39 Fischer, B. E.; Spohr, R. Rev. Mod. Phys. 1983, 55(4), 907   DOI