• Title/Summary/Keyword: Vapor flow

Search Result 973, Processing Time 0.03 seconds

Robust Design for Shape Parameters of High Pressure Thermal Vapor Compressor by Numerical Analysis (전산해석을 통한 고압열증기압축기 형상변수에 관한 강건 설계)

  • Park, Il-Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.931-937
    • /
    • 2008
  • A high motive pressure thermal vapor compressor(TVC) for a commercial multi-effect desalination(MED) plant is designed to have a high entraining performance and its robustness is also considered in the respect of operating stability at the abrupt change of the operating pressures like the motive and suction steam pressure which can be easily fluctuated by the external disturbance. The TVC having a good entraining performance of more than entrainment ratio 6.0 is designed through the iterative CFD analysis for the various primary nozzle diameter, mixing tube diameter and mixing tube length. And then for a couple of TVC having a similar entrainment ratio, the changes of the entrainment ratio are checked along the motive and suction pressure change. The system stability is diagnosed through the analyzing the changing pattern of the entrainment ratio.

The Effect of Pressure on Laminar Film Condensation along a Horizontal Plate (수평평판의 층류 막응축에서 압력의 영향)

  • Lee, Euk-Soo;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.945-953
    • /
    • 2008
  • Laminar film condensation of saturated vapor in forced flow over a flat plate is analysed. The problem is formulated as exact boundary-layer solution and integral approximate solution. From numerical solutions of the governing equations, it is found that the energy transfer by convection and the effect of inertia term in the momentum equation in negligibly small for low pressure but quite important for high pressure. The condensate rate, liquid-vapor interfacial shear stress and local heat transfer are strongly dependent on the reduced pressure $P_r$ and the modified Jacob number Ja/Pr.

Effects of non-absorbable gases in the absorption process of water vapor Into the Lithium Bromide-water solution film on horizontal tube bank (수평관군에서 리튬브로마이드 수용액 막의 수증기 흡수과정에 대한 비흡수가스의 영향)

  • 김병주;권기석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.218-225
    • /
    • 2000
  • In the present study, the effects of film Reynolds number (60∼200) and volumetric content of non-absorbable gases (0∼10%) in water vapor on the absorption process of aqueous LiBr solution were investigated experimentally. The formation of solution film on the horizontal tubes of six rows were observed to be complete for Re>100. Transition film Reynolds number were found to exist above which the Nusselt number and Schmidt number diminishes with solution flow rate. As the concentration of non-absorbable gases increased, mass transfer rate decreased more seriously than heat transfer rate did. The degradation effects of non-absorbable gases seemed to be significant especially when small amount of non-absorbable gases were introduced to the pure water vapor.

  • PDF

Fabrication of Pentacene Thin Film Transistors by using Organic Vapor Phase Deposition System (Organic Vapor Phase Deposition 방식을 이용한 펜타센 유기박막트랜지스터의 제작)

  • Jung Bo-Chul;Song Chung-Kun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.512-518
    • /
    • 2006
  • In this paper, we investigated the deposition of pentacene thin film on a large area substrate by Organic Vapor Phase Deposition(OVPD) and applied it to fabrication of Organic Thin Film Transistor(OTFT). We extracted the optimum deposition conditions such as evaporation temperature of $260^{\circ}C$, carrier gas flow rate of 10 sccm and chamber vacuum pressure of 0.1 torr. We fabricated 72 OTFTs on the 4 inch size Si Wafer, Which produced the average mobility of $0.1{\pm}0.021cm^2/V{\cdot}s$, average subthreshold slope of 1.04 dec/V, average threshold voltage of -6.55 V, and off-state current is $0.973pA/{\mu}m$. The overall performance of pentacene TFTs over 4 ' wafer exhibited the uniformity with the variation less than 20 %. This proves that OVPD is a suitable methode for the deposition of organic thin film over a large area substrate.

Synthesis of Ultrafine Silicon Nitride Powders by the Vapor Phase Reaction (기상반응에 의한 $Si_3N_4$ 미세분말의 합성)

  • 유용호;어경훈;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.44-49
    • /
    • 2000
  • Silicon nitride powders, were synthesized by the vapor phase reaction using SiH4-NH3 gaseous mixture. The reaction temperature, ratio of NH3 to SiH4 gas and the overall gas quantity were varied. The synthesized powders were characterized using X-ray, TEM, FT-IR and EA. The synthesized silicon nitride powders were in amorphous state, and the average particle size was about 100nm. TEM analysis revealed that the particle size decreased with increasing reaction temperature and gas flow quantity. As-received amorphous powders were annealed in nitrogen atmosphere at 140$0^{\circ}C$ for 2h, then the powders were completely crystallized at 0.2 ratio of NH3 to SiH4.

  • PDF

An experimental study of heat transfer and particle deposition during the outside vapor deposition process (외부증착공정(OVD)에서 열전달 및 입자부착에 관한 실험적 연구)

  • ;;Kim, Jaeyun;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3063-3071
    • /
    • 1995
  • An experimental study has been carried out for the heat transfer and particle deposition during the Outside Vapor Deposition process. The surface temperatures of deposited layers, and the rates, efficiencies and porosities of particle deposition were measured. It is shown that the axial variation of the surface temperature can be assumed to be quasi-steady and that as the traversing speed of burner is increased, the deposition rate, efficiency and porosity increase due to the decreased surface temperature. As the flow rate of the chemicals is increased, both the thickness of deposition layers and the surface temperature increase. Deposition rate also increases, however, deposition efficiency decreases for tests done. Later passes in early deposition stage result in higher surface temperatures due to increased thickness of porous deposited layers, which cause the deposition rate, efficiency, and porosity to decrease.

Analyses of Thermodynamic Vaporization Behaviour and Voloxidaion Conditions for Metal Oxides (금속산화물의 열역학적 휘발 거동 및 휘발 산화 공정의 조건 분석)

  • Lee, Young Woo;Park, So Young;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.7-10
    • /
    • 2013
  • Metal oxides are known as stable materials during a thermal treatment. However, some oxides are readily evaporated at high temperatures. A voloxidation process is a head-end process for a pyroprocessing dealing with spent nuclear fuels (SF). In SFs, fission productions are in the form of oxides and some of them would be evaporated during the voloxidation process. Therefore, it is of importance to analyse the vapor pressures of metal oxides so that the material flows throughout the pyroprocessing could be estimated. In this work, vapor pressures of relevant metal oxides were calculated and presented to draw a baseline on the material flow of the pyroprocessing.

  • PDF

A MECHANISM OF DEEP WELD PENETRATION IN GAS TUNGSTEN ARC WELDGING WITH ACTIVATING FLUX

  • Manabu Tanaka;Hidenori Terasaki;Masao Ushio;John J. Lowke;Yang, Chun-Li
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.76-81
    • /
    • 2002
  • The dramatic increase in the depth of a weld bead penetration has been demonstrated by welding a stainless steel in GTA (Gas-Tungsten-Arc) process with activating flux which consists of oxides and halides. However, there is no commonly agreed mechanism fer the effect of flux on the process. In order to make clear the mechanism, each behavior of the arc md the weld pool in GTA process with activating flux is observed in comparison with a conventional GTA process. A constricted anode root is shown in GTA process with the activating flux, whereas a diffuse anode root is shown in the conventional process. These anode roots are related strongly to metal vapor from the weld pool and the metal vapor is also related to temperature distributions on the weld pool surface. Furthermore, it is suggested that a balance between the Marangoni force and the drag force of the cathode jet should dominate the direction of re-circulatory flow in the weld pool. The electromagnetic force encourages the inward re-circulatory flow due to the constricted anode root in the case with flux. The difference in flow direction in the weld pool changes the geometry or depth/width ratio of weld bead penetration.

  • PDF

Flow and Heat Transfer Characteristics of the Evaporating Extended Meniscus in a Micro Parallel Plate (마이크로 평판내 증발에 의한 확장초승달영역의 열/유동특성)

  • Park, Kyong-Woo;Noh, Kwan-Joong;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.476-483
    • /
    • 2003
  • A mathematical model is presented to predict the two-phase flow and heat transfer phenomena of the evaporating extended meniscus region in a micro-channel. The pressure difference at the liquid-vapor interface can be obtained by the augmented Laplace-Young equation. The correlative equations for film thickness, pressure, and velocity in the meniscus region are derived by applying the mass, momentum, and energy equations into the control volume. The results show that increasing the heat flux and the liquid inlet velocity cause the length and liquid film thickness of the extended meniscus region to decrease. The variation, however, of the heat flux and liquid inlet velocity has no effect on the profile of film thickness. The majority of heat is transferred through the thin film region that is a very small region in the extended meniscus region. It is also found that the vapor velocity increases gradually in the meniscus region. However, it increases sharply at the junction of the meniscus and thin film regions.

A Study on the Operating Characteristics by Counter Flow and Parallel Flow in Separate Heat Pipe Exchanger (분리형 히트파이프식 열교환기에서 향류 및 병류유동에 따른 가동특성에 관한 연구)

  • 이기우;장기창;유성연
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.44-56
    • /
    • 1998
  • Separate heat pipe exchanger is considered as the high thermal transportation equipment, because evaporator and condenser are separately positioned in the long distance. Its characteristics are that the working fluid is circulated naturally by the position height of two exchangers. But the operating characteristics are restricted by the temperature of hot and cold fluid, flow pattern and diameter of vapor line, etc. in this study, the vapor pressure and the minimum height of two exchangers are studied about the factors restricting the operating characteristics.

  • PDF