• Title/Summary/Keyword: Vapor deposition polimerization(VDP)

Search Result 5, Processing Time 0.02 seconds

Effects of Organic Passivation Layers by Vapor Deposition Polymerization(VDP) for Organic Thin-Film Transistors(OTFTs) (Vapor Deposition Polymerization(VDP)을 이용한 페시베이션이 유기박막트렌지스터에 주는 영향)

  • Park, Il-Houng;Hyung, Gun-Woo;Choi, Hak-Bum;Kim, Jae-Hyeuk;Kim, Woo-Young;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.114-115
    • /
    • 2007
  • In this paper, it was demonstrated that organic thin-film transistors (OTFTs) were fabricated with the organic passivation layer by vapor deposition polymerization (VDP) processing, In order to form polymeric film as an passivation layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing, Field effect mobility, threshold voltage, and on-off current ratio with 450-nm-thick organic passivation layer were about $0.21\;cm^2/Vs$, IV, and $1\;{\times}\;10^5$, respectively.

  • PDF

Stability of Organic Thin-Film Transistors Fabricated by Inserting a Polymeric Film (고분자막을 점착층으로 사용한 유기 박막 트랜지스터의 안정성)

  • Hyung, Gun-Woo;Pyo, Sang-Woo;Kim, Jun-Ho;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.61-62
    • /
    • 2006
  • In this paper, it was demonstrated that organic thin- film transistors (OTFTs) were fabricated with the organic adhesion layer between an organic semiconductor and a gate insulator by vapor deposition polymerization (VDP) processing. In order to form polymeric film as an adhesion layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing. The saturated slop in the saturation region and the subthreshold nonlinearity in the triode region were c1early observed in the electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure. Field effect mobility, threshold voltage, and on-off current ratio in 15-nm-thick organic adhesion layer were about $0.5\;cm^2/Vs$, -1 V, and $10^6$, respectively. We also demonstrated that threshold voltage depends strongly on the delay time when a gate voltage has been applied to bias stress.

  • PDF

Effect of Adhesion Layer on Gate Insulator (게이트 절연막에 사용된 점착층에 대한 영향)

  • Lee, Dong-Hyun;Hyung, Gun-Woo;Pyo, Sang-Woo;Kim, Young-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.357-361
    • /
    • 2006
  • The electrical performances of organic thin-film transistors (OTFTs) have been improved for the last decade. In this paper, it was demonstrated that the electrical characteristics of the organic thin film transistors (OTFTs) were improved by using polymeric material as adhesion layer on gate insulator. We have investigated OTFTs with polyimide adhesion layer which was fabricated by vapor deposition polymerization (VDP) processing and formed by co-deposition of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 4,4'-oxydianiline. It was found that the OTFTs with adhesion layer showed better electrical characteristics than with bare layer because of good matching between semiconductor and gate insulator. Our devices of performance are field effect mobility of $0.4cm^2/Vs$, threshold voltage of -0.8 V and on-off current ratio of $10^6$. In addition, to improve the electrical characteristics of OTFT, we have reduced the thickness of adhesion layer up to a few nanometrs.

The Effect of Adhesion layer on Gate Insulator for OTFTs (OTFT의 게이트 절연막에 사용된 점착층에 대한 영향)

  • Lee, Dong-Hyun;Hyung, Gun-Woo;Pyo, Sang-Woo;Kim, Jung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.70-71
    • /
    • 2005
  • The electrical performances of organic thin-film transistors (OTFTs) have been improved for the last decade. In this paper, it was demonstrated that the electrical characteristics of the organic thin film transistors (OTFTs) were improved by using polymeric material as adhesion layer on gate insulator. We have investigated OTFTs with polyimide adhesion layer which was fabricated by vapor deposition polymerization (VDP) processing and formed by co-deposition of 6FDA and ODA. It was found that the OTFTs with adhesion layer showed better electrical characteristics than with bare layer because of good matching between semiconductor and gate insulator. Our devices of performance are field effect mobility of $0.4cm^2$/Vs, threshold voltage of -0.8 V and on-of current ratio of $10^6$. In addition, to improve the electrical characteristics of OTFT, we have reduced the thickness of adhesion layer up to a few nanometrs.

  • PDF

Effects of Polyimide Passivation Layers and polyvinylalcohol Passivation Layers for Organic Thin-Film Transistors(OTFTs) (폴리이미드 패시베이션과 폴리비닐알콜 패시베이션 레이어 성막이 고성능 유기박막 트렌지스터에 주는 영향)

  • Park, Il-Houng;Hyung, Gun-Woo;Choi, Hak-Bum;Hwang, Sun-Wook;Kim, Young-Kwan
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.195-198
    • /
    • 2008
  • In this paper, it was demonstrated that organic thin-film transistors (OTFTs) were fabricated with the organic passivation layer by vapor deposition polymerization (VDP) processing. In order to form polymeric film as a passivation layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing. In order to investigate by compared with different passivation layer, the other OTFTs is fabricated to passivation by Polyvinylalcohol using spincoating. We can see that two different ways of passivation layer affect electric characteristic of OTFTs. The initial electric characteristic of OTFTs before passivation such as field effect mobility, threshold voltage, and on-off current ratio are $0.24cm^2/Vs$, -3V, and $10^6$, respectively. Then after polyimide passivation layer, field effect mobility change from $0.24cm^2/Vs$ to $0.26cm^2/Vs$, threshold voltage from -3V to 1V and on-off current ratio from $10^6$ to $10^6$, respectively. In the case of polyvinylalcohol passivation, the initial electric characteristic of OTFTs before passivation such as field effect mobility, threshold voltage, and on-off current ratio are $0.13cm^2/Vs$, 0V, and $10^6$, respectively. Then after polyvinylalcohol passivation layer, field effect mobility changes from $0.13cm^2/Vs$ to $0.13cm^2/Vs$, threshold voltage from 0V to 2V, and on-off current ratio from $10^6$ to $10^5$, respectively.