• Title/Summary/Keyword: Vapor Explosion

Search Result 140, Processing Time 0.02 seconds

A Study on Estimation of Human Damage for Shock Wave by Vapor Cloud Explosion using Probit Model (Probit 모델에 의한 증기운폭발 충격파의 인체피해예측)

  • Leem, Sah-Wan;Huh, Yong-Jeong;Lee, Jong-Rark
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.936-941
    • /
    • 2007
  • This paper is on the influence of gas explosion caused by Vapor Cloud Explosion(VCE). Also, it is to understand the influence of the booth for explosion experiment which is installed to let the trainees for legal education which is managed by IGTT(Institute or Gas Technology Training) know the riskiness of explosion. In this study, the influence of explosion shock wave caused by VCE in enclosure was calculated by using the Hopkinson's scaling law and the accident damage was estimated by applying the influence on the adjacent human into the probit model. As a result of the damage estimation conducted by using the probit model, both the damage possibility of explosion overpressure to human 8 meters away and that of shock wave to hurt 15 meters away showed nothing.

A Study on the Explosionproof devices Installation in the Manufacturing Process (제조업체 방폭설비 적용에 관한 연구)

  • Song, Yong-Sig;Lee, Jun-Suk;Jeong, Hyun-Gyu;Cho, Won-Cheol;Lee, Tae-Shik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.565-570
    • /
    • 2007
  • The explosionproof apparatus is a devices that is enclosed in a case capable of withstanding an explosion of a specified gas or vapor that may occur within it and of preventing the ignition of a specified gas or vapor surrounding the enclosure by sparks, flashes, or explosion of the gas or vapor within, and that operates at such an external temperature that a surrounding flammable atmosphere will not be ignited thereby This kind of exeplosionfproof devices should be installed suitable for the characteristics of the space or process condition that should be protected to prevent explosion or fire. But, due to the lack of information and techniques on the explosionproof technology, some dangerous area is not properly protected from an explosion or it cost too much to implement the explosionproof devices. In this report, the basic guidelines and several case studies of explosionproof devices installation will be introduced to be of help to field safety engineer.

  • PDF

The Method of Consequence Analysis of the Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Gas-Liquid Flow for the Small and Medium Size Enterprises(SMS) (기-액흐름 연속누출에 의한 개방공간 증기운 폭발사고를 중심으로 중.소규모 사업장을 위한 사고 영향평가 방법)

  • 장서일;이헌창;조지훈;김태옥
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.64-70
    • /
    • 2003
  • For the unconfined vapor cloud explosion(UVCE) accident by the continuous release of gas-liquid flow of various saturated liquids in a vessel at ground level, overpressures were estimated by TNT equivalency model with two estimation methods, such as UVCE I model based on a constant release time and UVCEII model based on a real travel time of vapor by dispersion and analyzed with various release conditions. As a simulation result the simple, easy, and correct method of evaluation of consequences of the UVCE accident was proposed by using consequences of UVCE I model and correlation equations for differences of overpressures between UVCE models, so that this evaluation method could be used easily in the small and medium size enterprises without using the dispersion model.

Parameters Affecting the Consequences of the Unconfined Vapor Cloud Explosion Accident by the Release of Heavy Gas (무거운 가스의 누출에 의한 개방공간 증기운 폭발사고에서 사고결과에 미치는 매개변수의 영향)

  • Kim, Tae-Ok;Ham, Byeong-Ho;Cho, Ji-Hoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.3
    • /
    • pp.21-27
    • /
    • 2007
  • This paper analyses the effect of parameters on the consequences of the unconfined vapor cloud explosion accident (UVCE) by the release of heavy gas (xylene vapor). Simulation results showed that the overpresure was increased with the increase of the release hole diameter and with the decrease of the interested distance and the wind speed. While, the overpresure was not nearly affected by the release height, weather and environmental conditions. From the results of the consequence analysis and analysis of affecting the consequences of UVCE, the emergency plan should be established taking into account these parameters.

A Study on the Shock Wave Caused by VCE in Enclosure (밀폐공간에서의 VCE에 의한 충격파 고찰)

  • Leem, Sa-Hwan;Lee, Jong-Rark;Huh, Yong-Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In order to establish detailed plans for fire protection and reduce the possible fire accidents in the future, a study on the shock wave caused by VCE(Vapor Cloud Explosion) is very important. Destruction phenomena of structure by gas explosion is due to the explosion pressure and heat. Explosion pressure is a kind of energy converted from the gas mixture explosion. Therefore, the propagation progress of shock wave and flame is very important. This study investigated the shock wave caused by VCE in enclosure with opened vent port. From a result, the vent port of top at the straight line of ignition and leak location was opened most rapidly, and the vertical vent port not opened.

A Study on the Shock Wave caused by VCE in Enclosure (밀폐공간에서의 VCE에 의한 충격파 고찰)

  • Leem, Sa-Hwan;Huh, Yong-Jeong;Lee, Jong-Rark
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.54-59
    • /
    • 2007
  • In order to establish detailed plans for fire protection and reduce the possible fire accidents in the future, a study on the shock wave caused by VCE(Vapor Cloud Explosion) is very important. Destruction phenomena of structure by gas explosion is due to the explosion pressure and heat. Explosion pressure is a kind of energy converted from the gas mixture explosion. Therefore, the propagation progress of shock wave and flame is very important. This study investigated the shock wave caused by VCE in enclosure with opened vent port. From a result, the vent port of top at the straight line of ignition and leak location was opened most rapidly, and the vertical vent port not opened.

  • PDF

A Study on Safety Assessment of Hydrogen Station (수소충전소의 안전성 평가 연구)

  • PYO, DON-YOUNG;KIM, YANG-HWA;LIM, OCK-TAECK
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.499-504
    • /
    • 2019
  • Due to the rapid spread and low minimum ignition energy of hydrogen, rupture is highly likely to cause fire, explosion and major accidents. The self-ignition of high-pressure hydrogen is highly likely to ignite immediately when it leaks from an open space, resulting in jet fire. Results of the diffusion and leakage simulation show that jet effect occurs from the leakage source to a certain distance. And at the end of location, the vapor cloud explosion can be occurred due to the formation of hydrogen vapor clouds by built-up. In the result, it is important that depending on the time of ignition, a jet fire or a vapor cloud explosion may occur. Therefore, it is necessary to take into account jet effect by location of leakage source and establish a damage minimizing plan for the possible jet fire or vapor cloud explosion. And it is required to any kind of measurements such as an interlock system to prevent hydrogen leakage or minimize the amount of leakage when detecting leakage of gas.

The Consequence Analysis for Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Gas-Liquid Flow (기-액흐름 연속누출에 의한 개방공간 증기운 폭발사고의 영향평가)

  • 장서일;이헌창;김태옥
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • For the unconfined vapor cloud explosion accident by the continuous release of gas-liquid flow of various saturated liquids in a vessel at ground level, overpressures were estimated and analyzed with various release conditions and materials by TNT equivalency model with vapor dispersion. We found that at same release conditions, overpressure showed n-heptane > xylene > n-hexane > toluene > n-heptane > benzene, respectively and that overpressure was increased with increasing the hole diameter and the storage pressure, but it was increased with decreasing the wind speed, the interested distance, and the vessel thickness.

Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases (플랜트 폭발 사례 분석을 통한 증기운 폭발의 폭압 산정법 연구)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Vapor cloud explosions show different characteristics from that caused by ordinary TNT explosives and their loading effect is similar to pressure waves. Typical methods used for blast pressure calculations are the TNT-equivalent method and multi-energy method. The TNT-equivalent method is based on shock waves, similar to a detonation phenomenon, and multi-energy method is based on pressure waves, similar to a deflagration phenomenon. This study was conducted to derive an appropriate blast pressure by applying various plant explosion cases. SDOF analysis and nonlinear dynamic analysis were performed to compare the degree of deformation and damage of the selected structural members for the explosion cases. The results indicated that the multi-energy method was more exact than the TNT-equivalent method in predicting the blast pressure of vapor cloud explosions. The blast pressure of vapor cloud explosion in plants can be more accurately calculated by assuming the charge strength of multi-energy method as 7 or 8.

Construction of Expert System for Hazard Assessment of Unconfined Vapor Cloud Explosion (증기운 폭발의 위험성 평가를 위한 전문가 시스템의 구축)

  • 함병호;손민일;김태옥;조지훈;이영순
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 1995
  • To evaluate readily the effect of unconfined vapor cloud explosion(UVCE) having high possibility of accident and risk in chemical industries, the expert system of UVCE was developed and its applicability on a real accident was analyzed. We found that the hazard of UVCE could be well evaluated from the TNT equivalency model and the empirical loss data produced by overpressure for chemical facilities. By using the developed expert system, the size of vapor cloud, the quantity of vaporization, the released energy, the overpressure range from explosion point, and the impact damage of each installation could be estimated respectively. Also, probable maximum loss and catastrophic loss potential for real accident( cyclohexane release in Flixborough Nypro company) were estimated and compared with damages of the accident. As a result, the developed expert system could be well applicable to real accident.

  • PDF