Vapor explosion is one of the most important problems encountered in severe accident management of nuclear power plants. In spite of many efforts, a lot of questions still remain for the fundamental understanding of vapor explosion phenomena. Therefore, KAERI launched a real material experiment called TROI using 20 kg of UO2 and ZrO2 to investigate the vapor explosion phenomena. In addition, a small-scale experiment with molten-tin/water system was performed to quantify the characteristics of vapor explosion and to understand the phenomenology of vapor explosion. A number of instruments were used to measure the physical change occurring during the vapor explosion. In this experiment, the vapor explosion generated by molten fuel water interaction is visualized using high speed camera and the pressure behavior accompanying the explosion is investigated.
Vapor explosion is one of the most important problems encountered in severe accident management of nuclear power plants. In spite of many efforts, a lot of questions still remain. So, KAERI launched a real experimental program called TROI using $UO_{2}$ and $ZrO_{2}$ to investigate the vapor explosion. Besides TROI tests, a small-scale experiment with molten-tin/water system was performed to quantify the characteristics of vapor explosion and to understand the phenomenology of vapor explosion. A vapor explosion was observed while the amount of air bubble and water temperature were systematically varied The mass and temperature of tin are $50\;g\;and\;150^{\circ}C$, respectively. Water temperature is set to $24^{\circ}C\;and\;50^{\circ}C$. The void fraction of air bubble ranges from $0\;to\;10\;{\%}$. The strength of vapor explosion was measured using dynamic pressure sensors attached in reactor tube wall. as a function of void fraction. In addition, a high speed video filming up to 1,000 flame/sec was taken in order to visually investigate the behavior of the vapor explosion .
A safety assessment of reactor vessel lower head integrity under in-vessel vapor explosion loads has been performed. The core melt relocation parameters were chosen within the ranges of physically realizable bounds. The premixing and explosion calculations were performed using TRACER-II code. Using the calculated explosion pressures imposed on the lower head inner wall, strain calculations were peformed using ANSYS code. Then, the calculated strain results and the established failure criteria were used in determining the failure probability of the lower head, In the explosion analyses, it is shown that the explosion impulses are not altered significantly by the uncertain parameters of triggering location and time, fuel and vapor volume fractions in uniform premixture bounding calculations. Strain analyses show that the vapor explosion-induced lower head failure is not possible under the present framework of assessment. The result of static analysis using the conservative explosion-end pressure of 50 MPa also supports the conclusion. It is recommended, however, that an assessment of fracture mechanics for preexisting cracks be also considered to obtain a more concrete conclusion.
The assessment of catastrophic accidents such as BLEVE, vapor cloud explosion, and toxic material releases in the chemical process industries(CPI) shall be carried out according to the Requirement of PSM/SMS enforced by Korea Government Agencies, but reasonable models are not proposed for the practical application. The traditional models, TNT Equivalency Model, are well-known and helpful for the assessment of vapor cloud explosion. However, the estimated-damage-area using the traditional model has much more deviations comparing to the real damage caused by vapor cloud explosion suffered before. These are why an expert system for the assessment of vapor cloud explosion has been developed, which is based on theoretical, statistical and experimental data, and it would be helpful for CPI to evaluate the damage-area in case of vapor cloud explosion.
Various flammable vapors as energy source and raw material have been stored, transported in the industries, and accidental leakage of these vapors occurs occasionally. Without an appropriate protection system, flammable vapors can be ignited and serious damage results from them. To reduce the risk caused by explosion, we should know the explosion limit and explosion characteristics. In this study, the maximum explosion pressure, the maximum explosion pressure rise, the effect of temperature and mixing with other vapor were measured in a cylindrical vessel. Experimental results showed that maximum explosion pressure of flammable vapor was about 3.1~$4.2 kg/cm^2$ and it was reached 3.4 times faster than that at explosion limit. The lower explosion limit was coincided well with Le Chateilier's equation, however, upper explosion limit was not.
인화성 물질을 보유하고 있는 시설물에서 인화성 물질이 유출되어 형성된 증기운의 폭발이 국내와 해외에서 자주 발생하고 있다. 본 연구에서는 증기운 폭발에 따른 폭풍 효과를 모사하기 위해서 TNT 등가법과 다중에너지법을 적용하였다. TNT 등가법은 단순하고 직접적인 적용이 가능하기 때문에 증기운 폭발을 해석하기 위해서 지금까지 널리 사용되고 있다. 그러나 TNT 등가법은 증기운 폭발로부터 발생하는 연소에너지와 이를 TNT 등가량으로 환산하는데 필요한 적절한 상관관계를 선택하는 것이 어렵다는 근본적인 단점을 가지고 있다. 다중에너지법에서는 증기운 폭발의 강도가 증기운이 확산되는 지역에서의 확산 경로의 레이아웃에 따라 달라진다고 가정한다. 즉 증기운의 잠재적 폭발력은 혼잡지역의 혼잡정도에 따라 달라진다. 본 연구에서는 TNT 등가법과 다중에너지법의 적용성을 평가하기 위해서 Flixborough 폭발사고를 사례연구로 분석하였다. 분석 결과 TNT 등가계수와 폭발강도계수를 현장상황에 맞게 적절히 선택하는 경우 TNT 등가법과 다중에너지법은 증기운 폭발 사고를 분석하는데 적합할 것으로 예상된다.
Vapor explosions can be classified in terms of modes of contact between the hot molten fuel and the coolant, since different contact modes may affect fuel-coolant mixing and subsequent vapor explosion energetics. It is generally accepted that most vapor explosion phenomena fall into three different modes of contact; fuel pouring into coolant, coolant injection into fuel and stratified fuel-coolant layers. In this study, we review previous stratified steam explosion experiments as well as recent experiments performed at the KTH in Sweden. While experiments with prototypic reactor materials are minimal, we do note that generally the energetics is limited for the stratified mode of contact. When the fuel mass involved in a steam explosion in a stratified geometry is compared to a pool geometry based on geometrical aspects, one can conclude that there is a very limited set of conditions (when melt jet diameter is small) under which a steam explosion is more energetic in a stratified geometry. However, under these limited conditions the absolute energetic explosion output would still be small because the total fuel mass involved would be limited.
원자력발전소 중대사고시 용융된 노심과 잔류냉각수가 증기폭발을 일으켜 원자로 격납용기의 건전성을 위협할 수 있다. 본 연구에서는 증기폭발을 모사할 수 있는 실험 장치를 제작하고, 물과 프레온을 사용하여 증기폭발실험을 수행하였다. 이때 고속카메라를 사용하여 폭발현상을 관측하였고, 동압측정기와 압력분출관을 이용하여 생성되는 폭발압력과 기계적인 에너지를 계측하였다. 이를 토대로 증기폭발의 중요인자들(물의 온도, 물의 주입속도, 물의 주입 시간, 그리고 냉매의 깊이)에 대한 민감도 분석을 수행하였다. 그리고, 압력용기 바닥의 구조물이 용융/냉각재의 반응에 미치는 영향을 살펴보기위하여 실험용기 내부에 그리드를 설치하여 폭발실험을 실시하였다. 물/프레온의 폭발실험에서 계측된 기계적에너지를 이용한 에너지효율은 0.5∼l.6%인 것으로 계산되었다.
This paper is estimation of structure damage caused by Explosion in LPG(Liquefied Petroleum Gas) filling station. As we estimate the influence of damage which occur at gas storage tank in filling station. We can utilize the elementary data of safety distance. In this study, the influence of over-pressure caused by VCE(Vapor Cloud Explosion) in filling station was calculated by using the Hopkinson's scaling law and the accident damage was estimated by applying the influence on the adjacent structure into the probit model. As a result of the damage estimation conducted by using the probit model, both the damage possibility of explosion overpressure to structures of max 265 meters away and to glass bursting of 1150 meters away was nearly zero in open space explosion.
본 논문에서는 확률론적 처리기법을 적용하여 플랜트 시설물의 폭발 재현주기에 따른 폭발 위험도를 분석하였다. HSE에서 제공하는 누출 데이터, DNV에서 제시한 플랜트당 연간 누출 빈도, 다양한 연구진이 제시한 점화 확률을 고려하여 누출량에 따른 폭발 재현주기를 산정하였다. 산정된 폭발 재현주기를 통해 폭발 위험도를 증기운의 부피 및 반경, 폭발하중에 대하여 평가하였다. 재현주기에 따른 증기운의 반경과 과거 실제 증기운 폭발 사례, 내폭설계 가이드라인을 비교 분석하여 설계폭발하중 모델을 위한 기준거리를 제시하였다. 멀티에너지법을 통하여 폭발 재현주기에 따른 폭발하중의 범위를 분석하였으며, 설계폭발하중 모델의 기준이 되는 재현주기를 제안하였다. 본 연구의 결과로 플랜트 시설물에 대한 성능기반 내폭설계의 간략한 표준안으로 활용이 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.