• 제목/요약/키워드: Vanadium ion

검색결과 88건 처리시간 0.025초

The Role of Vanadium Complexes with Glyme Ligands in Suppressing Vanadium Crossover for Vanadium Redox Flow Batteries

  • Jungho Lee;Jingyu Park;Kwang-Ho Ha;Hyeonseok Moon;Eun Ji Joo;Kyu Tae Lee
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.152-161
    • /
    • 2023
  • Vanadium redox flow batteries (VRFBs) have been considered one of promising power sources for large scale energy storage systems (ESS) because of their excellent cycle performance and good safety. However, VRFBs still have a few challenging issues, such as poor Coulombic efficiency due to vanadium crossover between catholyte and anolyte, although recent efforts have shown promise in electrochemical performance. Herein, the vanadium complexes with various glyme ligands have been examined as active materials to suppress vanadium crossover between catholyte and anolyte, thus improving the Coulombic efficiency of VRFBs. The conventional Nafion membrane has a channel size of ca. 10 Å, whereas vanadium cation species are small compared to the Nafion membrane channel. For this reason, vanadium cations can permeate through the Nafion membrane, resulting in significant vanadium crossover during cycling, although the Nafion membrane is a kind of ion-selective membrane. In this regard, various glyme additives, such as 1,2-dimethoxyethane (monoglyme), diethylene glycol dimethyl ether (diglyme), and tetraethylene glycol dimethyl ether (tetraglyme) have been examined as complexing agents for vanadium cations to increase the size of vanadium-ligand complexes in electrolytes. Since the size of vanadium-glyme complexes is proportional to the chain length of glymes, the vanadium permeability of the Nafion membrane decreases with increasing the chain length of glymes. As a result, the vanadium complexes with tetraglyme shows the excellent electrochemical performance of VRFBs, such as stable capacity retention (90.4% after 100 cycles) and high Coulombic efficiency (98.2% over 100 cycles).

VRFB-ESS용 전해질의 이온가수 분석방법 및 SOC 분석 (Analysis of Vanadium Ions and SOC in the Electrolytes of VRFB-ESS)

  • 서혜경;박원식;김강산
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.309-316
    • /
    • 2021
  • For the detection of the state of charge in VRFB-ESS, the analyses of UV-Visible spectrometry and the measurements of potential between the anolyte and catholyte were used in parallel. This paper includes the production of 4-valant ion from VOSO4 powder, 3- and 5-valant ions from electrochemical charge of 4-valant ion and 2-valant ion from 3-valant ion. It also includes the analyses of these valance ions and unknown electrolyte at any time using UV-Visible spectrometry. Through the analyses of the valance ions in samples, the SOCs of the samples at any charge-discharge times were verified.

Synthesis and Characterization of Nanocomposite Films Consisting of Vanadium Oxide and Microphase-separated Graft Copolymer

  • Choi, Jin-Kyu;Kim, Yong-Woo;Koh, Joo-Hwan;Kim, Jong-Hak;Mayes, Anne M.
    • Macromolecular Research
    • /
    • 제15권6호
    • /
    • pp.553-559
    • /
    • 2007
  • Nanocomposite films were prepared by sol-gel synthesis from vanadium triisopropoxide with $poly((oxyethylene)_9$ methacrylate)-graft-poly(dimethyl siloxane), POEM-g-PDMS, producing in situ growth of vanadium oxide within the continuous ion-conducting POEM domains of micro phase-separated graft copolymer. The formation of vanadium oxide was confirmed by wide angle x-ray scattering (WAXS) and Fourier transform infrared (FT-IR) spectroscopy. Small angle x-ray scattering (SAXS) revealed the spatially-selective incorporation of vanadium oxide in the POEM domains. Upon the incorporation of vanadium oxide, the domain periodicity of the graft copolymer monotonously increased from 17.2 to 21.0 nm at a vanadium content 14 v%, above which it remained almost invariant. The selective interaction of vanadium oxide with POEM was further verified by differential scanning calorimetry (DSC) and FT-IR spectroscopy. The nanocomposite films exhibited excellent mechanical properties $(l0^{-5}-10^{-7}dyne/cm^2)$, mostly due to the confinement of vanadium oxide in the POEM chains as well as the interfaces created by the microphase separation of the graft copolymer.

바나듐 산화환원 흐름전지를 위한 음이온교환막의 관능기에 따른 특성 연구 (A Study on the Effect of Different Functional Groups in Anion Exchange Membranes for Vanadium Redox Flow Batteries)

  • 이재명;이미순;남기석;전재덕;윤영기;최영우
    • 멤브레인
    • /
    • 제27권5호
    • /
    • pp.415-424
    • /
    • 2017
  • 바나듐 산화환원 흐름 전지에 핵심적으로 사용되는 이온교환막은 일반적으로 양이온교환막을 사용하고 있으나 co-ion인 바나듐 이온의 투과에 의한 장기적 성능 저하 문제를 해결하기 어렵다. 따라서 본 연구에서는 바나듐 투과도 및 장기 운전 안정성의 특성을 파악하기 위해 세 가지 다른 관능기를 보유한 음이온교환막을 제조하였다. 기저막으로는 다공성 폴리에틸렌 필름에 benzyl chloride (VBC)과 divinylbenzene (DVB)을 충진 및 가교 중합하여 제조한 후, 세 가지 다른 아민 관능기를 각각 도입하였다. 제조된 음이온교환막들에 대해 바나듐 이온 투과 정도 및 장기 운전 안정성을 관찰한 결과 triethylamine을 관능기로 적용한 음이온교환막에서 높은 에너지효율을 유지하면서도 가장 장기적 운전 안정성을 확보할 수 있었다.

바나듐 레독스 흐름전지용 Poly(arylene ether sulfone) 막의 특성 (Characteristics of Poly(arylene ether sulfone) Membrane for Vanadium Redox Flow Battery)

  • 오성준;정재현;신용철;이무석;이동훈;추천호;김영숙;박권필
    • Korean Chemical Engineering Research
    • /
    • 제51권6호
    • /
    • pp.671-676
    • /
    • 2013
  • 최근에 대용량 에너지 저장 시스템으로 레독스 흐름전지(Redox Flow Battery, RFB)가 활발히 연구 개발되고 있다. 불소계막을 대신할 저가의 탄화수소막이 RFB막으로 주목받고 있다. 본 연구에서는 Poly(arylene ether sulfone) (PAES) 막을 사용해 고가의 불소계막과 그 특성을 바나듐 레독스 흐름전지(VRB, Vanadium Redox Flow Battery)조건에서 비교하였다. 바나듐 이온투과도, 이온 교환 용량, OCV 변화, 팽윤, 충 방전 곡선, 에너지 효율 등을 측정했다. PAES 막은 Nafion 117막에 비해 바나듐 이온투과도가 낮고, 이온교환용량은 커서 Nafion 117을 사용한 RFB보다 에너지 효율이 높았다.

플루오린 함량 제어를 통한 LiVPO4O1-xFx 합성 및 리튬 이차전지 양극소재 전기화학 특성 분석 (Synthesis and Investigation of LiVPO4O1-xFxvia Control of the Fluorine Content for Cathode of Lithium-ion Batteries)

  • 김민경;이동휘;여찬규;최수연;최치원;윤현민
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.516-520
    • /
    • 2023
  • Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.

Location and Adsorbate Interactions of V(IV) Species in VH-SAPO-34 Studied by EPR and Electron Spin-Echo Modulation Spectroscopies

  • Gernho Back;Cho, Young-Soo;Lee, Yong-Ill;Kim, Yanghee;Larry Kevan
    • 한국자기공명학회논문지
    • /
    • 제5권2호
    • /
    • pp.73-90
    • /
    • 2001
  • Vanadium-doped H-SAPO-34 samples were prepared by a high-temperature solid-state reaction between SAPO-34 and the paramagnetic V(Ⅳ) species and characterized carefully by EPR and Electron Spin-Echo Modulation(ESEM) studies. The paramagnetic vanadium species generated in both V$_2$O$\_$5/ and VOSO$\_$4/ of SAPO-34 have the same narrow range of g value fur vanadium species assigned to VO$\^$2+/ inferred from the isotropic EPR spectrum at 293 K. The EPR and ESEM data indicate that the V(Ⅳ) species exist as a vanadyl ion either as [V(Ⅳ)]O$\^$2+/ or V$\^$4+/. The [V(Ⅳ)]O$\^$2+/ species seems to be more probable because SAPO-34 having a low negative framework charged and more positively charged species like V$\^$4+/can not be easily stabilized. Tetravalent vanadium ion in vadium-doped H- SAPO-34 can only be observed at the temperature lower than 77 K, while the vanadyl ion, VO$\^$2+/in the activated sample of VH-SAPO-34 can produce the ion even at room temperature. After the adsorption of methanol, ethanol, propanol or ethene to the VH-SAPO-34, only one molecule coordinate to [V(Ⅳ)]O$\^$2+/ was observed in EPR and ESEM spectra.

  • PDF

전바나듐계 레독스-흐름 전지용 Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) 음이온교환막의 합성 및 특성 (Synthesis and Characterization of Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery)

  • 백영민;곽노석;황택성
    • 폴리머
    • /
    • 제35권6호
    • /
    • pp.586-592
    • /
    • 2011
  • 본 연구에서는 전바나듐 레독스-흐름 전지용 음이온교환막의 제조를 위하여 vinylbenzyl chloride-co-styreneco-hydroxyethyl acrylate(VBC-co-St-co-HEA) 공중합체를 합성하였으며, 아민화 및 가교 반응을 통하여 음이온교환막을 제조하였다. 구조확인을 위하여 FTIR, $^1H$ NMR, TGA, GPC 분석을 하였으며, 음이온교환막의 함수율, 이온교환용량, 전기저항, 이온전도도 및 전바나듐 레독스-흐름 전지의 효율을 측정하였다. 음이온교환막의 이온교환용량, 전기저항, 이온전도도는 각각 1.17 meq/g, $1.9{\Omega}{\cdot}cm^2$, 0.009 S/cm이었으며, 전바나듐 레독스-흐름 전지 효율 실험 결과 충 방전효율, 전압효율 및 에너지효율은 각각 99.5, 72.6, 72.1%이었다.

Recent Progress on Sodium Vanadium Fluorophosphates for High Voltage Sodium-Ion Battery Application

  • Yuvaraj, Subramanian;Oh, Woong;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.1-13
    • /
    • 2019
  • Na-ion batteries are being considered as promising cost-effective energy storage devices for the future compared to Li-ion batteries owing to the crustal abundance of Na-ion. However, the large radius of the Na ion result in sluggish electrode kinetics that leads to poor electrochemical performance, which prohibits the use of these batteries in real time application. Therefore, identification and optimization of the anode, cathode, and electrolyte are essential for achieving high-performance Na-ion batteries. In this context, the current review discusses the suitable high-voltage cathode materials for Na-ion batteries. According to a recent research survey, sodium vanadium fluorophosphate (NVPF) compounds have been emphasized for use as a high-voltage Na-ion cathode material. Among the fluorophosphate groups, $Na_3V_2(PO_4)_2F_3$ exhibited the high theoretical capacity ($128mAh\;g^{-1}$) and working voltage (~3.9 V vs. $Na/Na^+$) compared to the other fluorophosphates and $Na_3V_2(PO_4)_3$. Here, we have also highlighted the classification of Fluorophosphates, NVPF composite with carbonaceous materials, the appropriate synthesis methods and how these methods can enhance the electrochemical performance. Finally, the recent developments in NVPF for the application in energy storage devices and its outlook are summarized.

Poly(vinylbenzyl chloride-glycidyl methacrylate)/Polyethylene Composite Anion Exchange Membranes for Vanadium Redox Battery Application

  • Park, Min-A;Shim, Joonmok;Park, Se-Kook;Jeon, Jae-Deok;Jin, Chang-Soo;Lee, Ki Bong;Shin, Kyoung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1651-1655
    • /
    • 2013
  • Anion exchange membranes for a vanadium redox flow battery (VRB) were prepared by pore-filling on a PE substrate with the copolymerization of vinylbenzyl chloride (VBC) and glycidyl methacrylate (GMA). The ion exchange capacity, water uptake and weight gain ratio were increased with a similar tendency up to 65% of GMA content, indicating that the monomer improved the pore-filling degree and membrane properties. The vanadium ion permeability and open-circuit voltage were also investigated. The permeability of the VG65 membrane was only $1.23{\times}10^{-7}\;cm^2\;min^{-1}$ compared to $17.9{\times}10^{-7}\;cm^2\;min^{-1}$ for Nafion 117 and $1.8{\times}10^{-7}\;cm^2\;min^{-1}$ for AMV. Consequently, a VRB single cell using the prepared membrane showed higher energy efficiency (over 80%) of up to 100 cycles compared to the commercial membranes, Nafion 117 (ca. 58%) and AMV (ca. 70%).