• Title/Summary/Keyword: Van der Waals Forces

Search Result 76, Processing Time 0.028 seconds

A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates

  • Mahmoudpour, E.;Hosseini-Hashemi, SH.;Faghidian, S.A.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.103-119
    • /
    • 2018
  • In the present research, an attempt is made to obtain a semi analytical solution for both nonlinear natural frequency and forced vibration of embedded functionally graded double layered nanoplates with all edges simply supported based on nonlocal strain gradient elasticity theory. The interaction of van der Waals forces between adjacent layers is included. For modeling surrounding elastic medium, the nonlinear Winkler-Pasternak foundation model is employed. The governing partial differential equations have been derived based on the Mindlin plate theory utilizing the von Karman strain-displacement relations. Subsequently, using the Galerkin method, the governing equations sets are reduced to nonlinear ordinary differential equations. The semi analytical solution of the nonlinear natural frequencies using the homotopy analysis method and the exact solution of the nonlinear forced vibration through the Harmonic Balance method are then established. The results show that the length scale parameters give nonlinearity of the hardening type in frequency response curve and the increase in material length scale parameter causes to increase in maximum response amplitude, whereas the increase in nonlocal parameter causes to decrease in maximum response amplitude. Increasing the material length scale parameter increases the width of unstable region in the frequency response curve.

The Crystal Structure of Benzidine Dihydrochloride (Benzidine 鹽酸鹽의 結晶構造)

  • Koo, Chung-Hoe;Kim, Hoon-Sup;Shin, Hyun-So
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.18-24
    • /
    • 1972
  • Benzidine dihydrochloride crystallizes in the triclinic system. The space group is $P_1$. The unit cell dimensions are; a = 4.38${\pm}$0.01, b = 5.76${\pm}$0.01, c = 12.82${\pm}$0.02${\AA}$, $\alpha$ = 101.5${\pm}$0.2, $\beta$ = 99.5${\pm}$0.2, $\gamma$ = 99.5${\pm}$0.2$^{\circ}$; with one molecule per unit cell. The crystal structure has been solved by two dimensional Patterson and by trial and error methods, and refined by means of two dimensional differential synthesis. The bond distances are C-C(*) = 1.40${\pm}$0.02, C-C = 1.52${\pm}$0.02, C-N = 1.51${\pm}$0.03 and N-H${\cdot}{\cdot}{\cdot}$Cl = 3.21${\pm}$0.03${\AA}$. The structure consists of hydrogen bonded molecular layers, extending to the (100) plane, and the hydrogen bonding scheme is similar to that of p-phenylenediamine dihydrochloride. The adhesion between hydrogen bonded molecular layers is due to van der Waals forces.

  • PDF

Guest Changes Host: Adsorption Site and Binding Nature of Hydrogen in MOF-5

  • Ju, Jae-Yong;Kim, Hyeong-Jun;Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.160.1-160.1
    • /
    • 2014
  • Using a density functional theory calculation including van der Waals (vdW) corrections, we report that $H_2$ adsorption in a cubic-crystalline microporous metal-organic framework (MOF-5) leads to volume shrinkage, which is in contrast to the intuition that gas adsorption in a confined system (e.g., pores in a material) increases the internal pressure and then leads to volumetric expansion. This extraordinary phenomenon is closely related to the vdW interactions between MOF and $H_2$ along with the $H_2$-$H_2$ interaction, rather than the Madelung-type electrostatic interaction. At low temperatures, $H_2$ molecules adsorbed in the MOF-5 form highly symmetrical interlinked nanocages that change from a cube-like shape to a sphere-like shape with $H_2$ loading, helping to exert centrosymmetric forces and hydrostatic (volumetric) stresses from the collection of dispersive interactions. The generated internal negative stress is sufficient to overcome the stiffness of the MOF-5 which is a soft material with a low bulk modulus (15.54 GPa).

  • PDF

Molecular Dynamics Study on the Pattern Transfer in Nanoimprint Lithography (분자 동역학을 이용한 나노임프린트 리소그래피에서의 패턴 전사에 관한 연구)

  • Kang Ji-Hoon;Kim Kwang-Seop;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.21 no.4
    • /
    • pp.177-184
    • /
    • 2005
  • The molecular dynamics simulation of nanoimprint lithography (NIL) using $SiO_2$ stamp and amorphous poly-(methylmethacrylate) (PNMA) film is performed to study pattern transfer in NIL. Force fields including bond, angle, torsion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and $SiO_2$ stamp. Nose-Hoover thermostat is used to control the system temperature and cell multipole method is adopted to treat long range interactions. The deformation of PMMA film is observed during pattern transfer in the NIL process. For the detail analysis of deformation characteristics, the distributions of density and stress in PMHA film are calculated. The adhesion and friction forces are obtained by dividing the PMMA film into subregions and calculating the interacting force between subregion and stamp. Their effects on the pattern transfer are also discussed as varying the indentation depth and speed.

Molecular Dynamic Simulation for Penetration of Carbon Nanotubes into an Array of Carbon Nnantotubes

  • Jang, Ilkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.290-296
    • /
    • 2020
  • When two layers of carbon nanotube (CNT) arrays are loaded to mate, the free ends of individual CNTs come into contact at the interface of the two layers. This leads to a higher contact resistance due to a smaller contact region. However, when the free CNT ends of one array penetrate into the mating array, the contact region increases, effectively lowering the contact resistance. To explore the penetration of mating CNTs, we perform molecular dynamic simulations of a simple unit cell model, incorporating four CNTs in the lower array layer coupled with a single moving CNT on the upper layer. The interaction with neighboring CNTs is modelled by long-range carbon bond order potential (LCBOP I). The model structure is optimized by energy minimization through the conjugate gradient method. A NVT ensemble is used for maintain a room temperature during simulation. The time integration is performed through the velocity-Verlet algorithm. A significant vibrational motion of CNTs is captured when penetration is not available, resulting in a specific vibration mode with a high frequency. Due to this vibrational behavior, the random behaviors of CNT motion for predicting the penetration are confirmed under the specific gap distances between CNTs. Thus, the probability of penetration is examined according to the gap distance between CNTs in the lower array and the aspect ratio of CNTs. The penetration is significantly affected by the vibration mode due to the van der Waals forces between CNTs.

Low Cost, Large Area Nanopatterning via Directed Self-Assembly

  • Kim, Sang-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.24-25
    • /
    • 2011
  • Molecular self-assembly has several advantages over other nanofabrication methods. Molecular building blocks ensure ultrafine pattern precision, parallel structure formation allows for mass production and a variety of three-dimensional structures are available for fabricating complex structures. Nevertheless, the molecular interaction for self-assembly generally relies on weak forces such as van der Waals force, hydrogen bonding, or hydrophobic interaction. Due to the weak interaction, the structure formation is usually slow and the degree of ordering is low in a self-assembled structure. To promote self-assembly, directed assembly methods employing prepatterned substrates or external fields have been developed and gathered a great deal of technological attention as a next generation nanofabrication process. In this presentation a variety of directed assembly methods for soft nanomaterials including block copolymers, peptides and carbon nanomaterials will be introduced. Block copolymers are representative self-assembling materials extensively utilized in nanofabrication. In contrast to colloid assembly or anodized metal oxides, various shapes of nanostructures, including lines or interconnected networks, can be generated with a precise tunability over their shape and size. Applying prepatterned substrates$^{1,2}$ or introducing thickness modulation$^3$ to block copolymer thin films allowed for the control over the orientational and positional orderings of self-assembled structures. The nanofabrication processes for metals, semiconductors$^4$, carbon nanotubes$^{5,6}$, and graphene$^{6,7}$ templating block copolymer self-assembly will be presented.

  • PDF

Recent Development of Scoring Functions on Small Molecular Docking (소분자 도킹에서의 평가함수의 개발 동향)

  • Chung, Hwan Won;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.49-53
    • /
    • 2010
  • Molecular docking is a critical event which mostly forms Van der waals complex in molecular recognition. Since the majority of developed drugs are small molecules, docking them into proteins has been a prime concern in drug discovery community. Since the binding pose space is too vast to cover completely, many search algorithms such as genetic algorithm, Monte Carlo, simulated annealing, distance geometry have been developed. Proper evaluation of the quality of binding is an essential problem. Scoring functions derived from force fields handle the ligand binding prediction with the use of potential energies and sometimes in combination with solvation and entropy contributions. Knowledge-based scoring functions are based on atom pair potentials derived from structural databases. Forces and potentials are collected from known protein-ligand complexes to get a score for their binding affinities (e.g. PME). Empirical scoring functions are derived from training sets of protein-ligand complexes with determined affinity data. Because non of any single scoring function performs generally better than others, some other approaches have been tried. Although numerous scoring functions have been developed to locate the correct binding poses, it still remains a major hurdle to derive an accurate scoring function for general targets. Recently, consensus scoring functions and target specific scoring functions have been studied to overcome the current limitations.

The Solvent-Independent Structure of Piroxicam (피록시캄의 용매 비의존 결정구조)

  • Kim, Bong-Hee;Suh, Il-Hwan;Jhee, Ok-In;Suh, Jong-Myung;Suh, Jung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.4
    • /
    • pp.209-215
    • /
    • 1988
  • The three-dimensional structures of piroxicam crystallized from two different solvents, toluene and toluene/hexane mixture respectively, are proved identical: $C_{15}H_{13}N_3O_4S,\;M\;=\;331.35$, monoclinic, a = 7.128(1), b = 15.146(2), c = 13.956(2) ${\AA},\;{\beta}=\;97.33(1)^{\circ},\;V\;=\;1494.37{\AA}^{3},\;Dx\;=\;1.472\;g/cm^{3},\;Z\;=\;4,\;space\;group\;P2_{1}/c,\;Mo\;K{\alpha}(\lambda=\;0.71073\;{\AA})$, F(000) = 688, T = 295 K, R = 0.0611 for 1993 unique observed reflections. The thiazine ring exhibits a half chair conformation. An amide group is involved in an intramolecular hydrogen bond to the hydroxy group, O(17)-H(17)${\cdots}O(15){\AA}$. The molecule is planar within 2 ${\AA}$ with the interplanar angle $127.9(4)^{\circ}$ between pyridine and benzene rings. A molecular chain parallel to [011] is formed by two intermolecular hydrogen bonds N(16)-H(6)${\cdots}O(11)$ and C(6)-H(6)${\cdots}O(11)$, and the molecular chains are held together by van der Waals forces.

  • PDF

Investingation of Laser Shock Wave Cleaning with Different Particle Condition (오염 입자 상태에 따른 레이저 충격파 클리닝 특성 고찰)

  • 강영재;이종명;이상호;박진구;김태훈
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.29-35
    • /
    • 2003
  • In semiconductor processing, there are two types of particle contaminated onto the wafer, i.e. dry and wet state particles. In order to evaluate the cleaning performance of laser shock wave cleaning method, the removal of 1 m sized alumina particle at different particle conditions from silicon wafer has been carried out by laser-induced shock waves. It was found that the removal efficiency by laser shock cleaning was strongly dependent on the particle condition, i.e. the removal efficiency of dry alumina particle from silicon wafer was around 97% while the efficiencies of wet alumina particle in DI water and IPA are 35% and 55% respectively. From the analysis of adhesion forces between the particle and the silicon substrate, the adhesion force of the wet particle where capillary force is dominant is much larger than that of the dry particle where Van der Waals force is dominant. As a result, it is seen that the particle in wet condition is much more difficult to remove from silicon wafer than the particle in dry condition by using physical cleaning method such as laser shock cleaning.

  • PDF

A semi-analytical study on the nonlinear pull-in instability of FGM nanoactuators

  • Attia, Mohamed A.;Abo-Bakr, Rasha M.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.451-463
    • /
    • 2020
  • In this paper, a new semi-analytical solution for estimating the pull-in parameters of electrically actuated functionally graded (FG) nanobeams is proposed. All the bulk and surface material properties of the FG nanoactuator vary continuously in thickness direction according to power law distribution. Here, the modified couple stress theory (MCST) and Gurtin-Murdoch surface elasticity theory (SET) are jointly employed to capture the size effects of the nanoscale beam in the context of Euler-Bernoulli beam theory. According to the MCST and SET and accounting for the mid-plane stretching, axial residual stress, electrostatic actuation, fringing field, and dispersion (Casimir or/and van der Waals) forces, the nonlinear nonclassical equation of motion and boundary conditions are obtained derived using Hamilton principle. The proposed semi-analytical solution is derived by employing Galerkin method in conjunction with the Particle Swarm Optimization (PSO) method. The proposed solution approach is validated with the available literature. The freestanding behavior of nanoactuators is also investigated. A parametric study is conducted to illustrate the effects of different material and geometrical parameters on the pull-in response of cantilever and doubly-clamped FG nanoactuators. This model and proposed solution are helpful especially in mechanical design of micro/nanoactuators made of FGMs.