• Title/Summary/Keyword: Valve-pipe System

Search Result 166, Processing Time 0.031 seconds

A Study on the Performance of Automatic Thermostatic Valves for Hot Water Heating System in Residential Buildings (공동주택 난방용 자동온도조절기의 성능해석 연구)

  • Ahn, Byung-Cheon;Lee, Tae-Won;Kim, Yong-Ki;Song, Jae-Yeob
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.457-462
    • /
    • 2005
  • In this study, the performance of automatic thermostatic valves according to each heating method of a large scale residential building were researched by simulation. The flow characteristics of the entire pipe networks of the hot water radiant heating system is analized by using linear analysis method. For the analysis of unsteady heat transfer phenomena in each household, the method of using electric equivalent R-C circuit is applied.

  • PDF

A Study on the Water Hammer Arrester Considering the Way of First Assessment Test (최초의 평가시험 방법을 고려한 수격흡수기의 장치에 관한 연구)

  • Yeum, Moon-Cheon;Han, Yong-Taek
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.53-59
    • /
    • 2015
  • Water hammering created by an unsteady flow in pipeline systems can cause excessive change in pressure, vibration, and noise. So, water hammer analysis is very important for limiting the damage caused to pipeline, pump and valve systems by operation conditions. On the other hand, water hammer arrester has been manufactured and used in order to minimize the damage caused by water hammering phenomenon in domestic, and it has been produced and installed as the low cost-oriented because of being no separate standard in the meanwhile. Therefore, our research team investigated about the standardization of water hammer arrester performance through the various methods, such as test methods for verification of one pipe, assuming the occurrence of water hammer in a water-based fire extinguishing system, separated for opening impact pressure and shut off impact pressure and for a branch pipe in order to make guideline for water hammer arrester performance. And finally, verified the performance of the water hammer pressure as the simple mechanical way using the U-shaped pipe and a test weight, so KFI standards for the water hammer arrester could be established.

System Design and Performance Test of Hydraulic Intensifier (유압 충격압력 발생기의 시스템 설계와 성능평가)

  • Kim, Hyoung-Eui;Lee, Gi-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.947-952
    • /
    • 2010
  • Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions prescribed in ISO and SAE standards. The impulse pressure test machine needs to have a high pressure, a precise control system and a long life. It should satisfy the requirements for fabrication of the impulse tester to generate ultra high pressure in the hydraulic system. In the impulse tester, a servo-valve control system is adopted; although the control application is convenient, it is expensive owing to the cost of developing the system. The type of the control system determines the pressure wave, which affects the components that are tested. In this study, the manufacturing process and the intensifier system design related to the flow, pressure, and the increasing rate of pressure are investigated. The results indicate the ultra high pressure waves in the system.

A Study on the Volumetric Efficiency Improvement by Variable Induction & Exhaust System in a Turbocharged Diesel Engine (가변 흡.배기시스템에 의한 과급디젤기관의 체적효율 향상에 관한 연구)

  • Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • In this study, a variable induction and exhaust system is applied to turbocharged diesel engine to improve the volumetric efficiency, especially, in a low and transient engine speed range where much of the pollutant matters are expelled out. The volumetric efficiency is known as one of the most important factor which affects significantly engine performance, fuel economy and further emission and noise level. As the torque increase with the engine speed up, the gas flow in an exhaust pipe become pulsating and then has an effect on boost up capacity of air charging into the cylinder and expelling capacity to atmosphere simultaneously. But at a low and idling speed, the pulsation effect was not so significant. Accordingly, resonator was employed to compensate their loss. The variable induction system consists of the secondary pipe, resonator, intercooler, and torque variance were examined with extended operating conditions. In the mean time, for interpretation and well understanding for the phenomena of wave action that arising during intake and exhaust process between turbocharger and variable intake system, the concept of the combined supercharging was introduced. Some of results are depicted which deal with a pressure history during valve events of induction process. Consequently, by the governing of these phase and amplitude of pulsating wave, it enables us to estimate and evaluate for the intake system performance and also, designing stage of the system layout.

  • PDF

The Analysis of Electrical Conduction and Corrosion Phenomena in HVDC Cooling System and the Optimized Design of the Heat Sink of the Semiconductor Devices (HVDC 냉각시스템의 전기전도현상 및 부식현상 기술 분석과 스위칭 소자의 방열판 최적 설계 검토)

  • Kim, Chan-Ki;Park, Chang-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.484-495
    • /
    • 2017
  • In HVDC thyristor valves, more than 95% of heat loss occurs in snubber resistors and valve reactors. In order to dissipate the heat from the valves and to suppress the electrolytic current, water with a high heat capacity and a low conductivity of less than 0.2 uS/cm must be used as a refrigerant of the heat sink. The cooling parts must also be arranged to reduce the electrolytic current, whereas the pipe that supplies water to the thyristor heat sink must have the same electric potential as the valve. Corrosion is mainly caused by electrochemical reactions and the influence of water quality and leakage current. This paper identifies the refrigerants involved in the ionization, electrical conductivity, and corrosion in HVDC thyristor valves. A method for preventing corrosion is then introduced. The design of the heat sink with an excellent heat radiation is also analyzed in detail.

A Study on the Shock Characteristics in the Hydraulic Power Shifting System of the Hydraulic Travel Motor (유압주행모터의 변속시 발생하는 충격특성에 관한 연구)

  • Lee, Joo-Seong;Lee, Kye-Bock
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.305-310
    • /
    • 2001
  • Hydraulic power shifting systems of hydraulic travel motor may be far safer than mechanical power transmission systems. Thus, hydraulic power shifting systems are widely used for speed control on the hydraulic equipments. In the case of liquid shifting lines, the rapid change of area, such as valve closing, can result in a large pressure transient. It is necessary to assure proper control method in order to obtain the smallest shift shock. This study conducts the shock characteristics of hydraulic power shifting system of the hydraulic travel motor. Experimental results show that shock pressure depends on the operating pressure, flow rate and pipe line area. The shock characteristics can be applied for reducing shocks.

  • PDF

A study on the pressure variation in the intake and exhaust pipes of four cycle four cylinder S.I. engine (4 사이클 4기통 전기점화기관의 흡배기관내의 압력변동에 관한 연구)

  • 이석재;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.85-91
    • /
    • 1988
  • The purpose of this study is to investigate the flow through the intake and exhaust system of a spark ignition engine. The flow was assumed to be one-dimensional, compressible and unsteady, and carburetor, muffler, valve and junction are modelled as boundary conditions according to their flow characteristics. In the experiment, four cylinder gasoline engine is used and the pressures in the intake and exhaust pipes and in the cylinder are measured and compared with the results of numerical analysis. In consequence of the comparison, four periods of pressure wave in a cycle are observed in both case of experiment and prediction. In case of exhaust pipe, the results obtained from the experiment are in accord with that from calculation. The results of the intake system show some differences with each other due to the complication in shape, but the periods of both case concur well.

  • PDF

On Rate of Multi-Hole Injector for Diesel Engine (디이젤 기관용 다공연료 분사 밸브의 분사율 측정)

  • Jeong, Dal-Sun;An, Su-Gil;Gwon, Gi-Rin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 1986
  • Ifis recommended that the injection rate should be accurate and reliable in the input data of the performance simulation in diesel engine. Matsuoka Sin improved W. Bosch's injection ratio measurement system. Matsuoka Sin reduced length of the test pipe and set the orifice. However, it was not measured accurately to measure the injection ratio due to reflection wave. In the present thesis, the improved measurement system with combination of the conventional W. Bosch type injection ratio measurement system and Matsuoka Sin type corrected W. Bosch type was practically made. The location of orifice and throttle valve was modified and set one more back pressure valve in order to reduce the effect of reflection wave. The results according to injection condition of multi-hole nozzle are following: 1. Measurement error of injection ratio measurement system in this thesis was $\pm$ 1 %, therefore, its reliability was good. 2. The form of injetion ratio is changed from trapezoidal shape to triangle shape with increase of revolution per minute when injection amount is constant. 3. In the case of constant rpm, the initial injection ratio is almost constant regardless of the amount, meanwhile the injection period becomes longer with increase of the amount. 4. The injection pressure of nozzle isn't largely influenced with injection ratio in the case of constant injection amount and rpm, otherwise the initial injection amount is increased by 3-4% when the injection pressure is low. 5. The injection ratio isn't nearly influenced with back pressure.

  • PDF

Review of Safety for Pressure-Relieving Systems of Small to Middle Scale Chemical Plants (중소규모 화학공장의 압력방출시스템에 대한 안전성 검토)

  • Yim, Ji-Pyo;Jin, Dae-Young;Ma, Byung-Chol;Kang, Sung-Ju;Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.48-55
    • /
    • 2015
  • A variety of safety issues were investigated for chemical reactors using a toluene solvent in case of a fire at small to middle scale chemical plants. The issues covered the operation of pressure-relieving valves and the subsequent discharges of the toluene to the atmosphere either directly or through an absorber, which represent the current practice at most small chemical plants. It was shown that the safety valve on the reactor may not operate within about twenty minutes after an external fire breaks out, but, once relieved, the toluene vapor released directly to the atmosphere may form a large explosion range on the ground. It was also shown that if the discharge is routed to an existing absorber used for the scrubbing of volatile organic compounds or dusts, the column may not operate normally due to excessive pressure drops or flooding, resulting in the hazardous release of toluene vapors. This study proposed two ways of alleviating these risks. The first is to ruduce the discharge itself from the safety valve by using adequate insulation and protection covers on the reactor and then introduce it into the circulation water at the bottom of the absorber through a dip linet pipe equipped with a ring-shaped sparger. This will enhance the condensation of toluene vapors with the reduced effluent vapors treated in the packing layers above. The second is to install a separate quench drum to condense the routed toluene vapors more effectively than the existing absorber.

A Study on Cost Benefit Analysis Optimization Model for Water Distribution Network Rehabilitation Project of Taebaek Region (태백권 배수관망 개량사업의 비용효과분석 최적화 모델 연구)

  • Kim, Taegon;Choi, Taeho;Kim, Kyoungpil;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.395-406
    • /
    • 2015
  • This research carried out an analysis on input cost and leakage reduction effect by leakage reduction method, focusing on the project for establishing an optimal water pipe network management system in the Taebaek region, which has been executed annually since 2009. Based on the result, optimal cost-benefit analysis models for water distribution network rehabilitation project were developed using DEA(data envelopment analysis) and multiple regression analysis, which have been widely utilized for efficiency analysis in public and other projects. DEA and multiple regression analysis were carried out by applying 4 analytical methods involving different ratios and costs. The result showed that the models involving the analytical methods 2 and 4 were of low significance (which therefore were excluded), and only the models involving the analytical methods 1 and 3 were suitable. From the result it was judged that the leakage management method to be executed with the highest priority for the improvement of revenue water ratio was installation of pressure reduction valve, followed by replacement of water distribution pipe, replacement of water supply pipe, and then leakage detection and repair; and that the execution of leakage management methods in this order would be most economical. In addition, replacement of water meter was also shown to be necessary in case there were a large number of defective water meters.