• 제목/요약/키워드: Valve-opening pressure

검색결과 191건 처리시간 0.028초

발전소용 고압 바이패스 밸브 내부 유동해석 (Analysis of Flow through High Pressure Bypass Valve in Power Plant)

  • 조안태;김광용
    • 한국유체기계학회 논문집
    • /
    • 제10권6호
    • /
    • pp.17-23
    • /
    • 2007
  • In the present work, flow analysis has been performed in the steam turbine bypass control valve (single-path type) for two different cases i.e., case with steam only and case with both steam and water. The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. The shear stress transport (SST) model and $k-{\varepsilon}$ model are used to each different case as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. The mass flow rate at maximum plug opening condition is compared with the designed mass flow rate. The numerical analysis of multiphase mixing flow(liquid and vapor) is also performed to inspect liquid-vapor volume fraction of bypass valve. The result of volume fraction is useful to estimate both the safety and confidence of valve design.

산화제 개폐밸브의 극저온 유동시험에서 채터링의 고찰 (A Study on the Chattering under Cryogenic Flow Test of a Oxidizer Shutoff Valve)

  • 이중엽;한상엽;이수용
    • 항공우주기술
    • /
    • 제12권2호
    • /
    • pp.108-117
    • /
    • 2013
  • 가스발생기용 산화제 개폐밸브는 파일롯 공압으로 포핏을 열고 스프링 힘에 의해 닫음으로써 로켓엔진의 추진제 유량을 제어한다. 현재 개발 중인 산화제 개폐밸브는 액추에이터에서 압력을 제거하면 닫히도록 설계되어 있다. 그러므로 밸브의 성능을 평가하기 위해 밸브가 열리고 닫히는 특성에 따라 힘 평형 상태를 분석할 필요가 있다. 밸브가 닫히기 시작하는 시점의 작동 유체의 압력을 결정하고, 포핏이 열리는 시점의 압력을 결정되어 힘평형이 설계되어 있다. 인증시험 수준에서의 극저온 유동 시험 하에서 채터링 현상은 금속 기밀부에서 다량의 누설이 발생했다. 힘평형 계산을 이용한 산화제 밸브의 채터링이 발생된 시점의 압력은 약 11 bar로 예측 된다.

Cone Type 밸브 내부유동 수치해석에 관한 연구 (A Study on the Numerical Analysis of Internal Flow in a Cone Type Valve)

  • 진도훈
    • 한국산업융합학회 논문집
    • /
    • 제23권2_2호
    • /
    • pp.199-207
    • /
    • 2020
  • These days, many different types of valves are developed in the industrial area according to their use purpose. Multiple kinds of valves are installed to control a flow and pressure of the pipe conveying fluid. Valves serve as critical roles in land plants such as power plants. The performance of equipment varies depending on valve characteristics. In this study, the internal flow analysis on Cone-type valve is conducted to analyze flow field and secure a value of the flow coefficient Cv. According to the internal flow analysis, when the flow distribution of the middle cross-section of valve was open 100%, flow field was relatively and smoothly taken out. If it was open 50%, flow recirculation region increased and a little complex flow field occurred. Unlike ball valve or butterfly valve, this valve had flow recirculation in its outlet depending on a valve opening amount. Therefore, it was found that there was no flow recirculation in the outlet of Cone-type valve.

GT-Power기반 Cam-In-Cam 가변밸브작동에 따른 스월유동 및 연소특성 해석 (Analysis of Swirl Flow and Combustion Characteristics by Variable Valve's Operation of Cam-In-Cam System based on GT-Power Program)

  • 이유민;조인수;김주현;박승우;이진욱
    • 한국분무공학회지
    • /
    • 제23권2호
    • /
    • pp.58-65
    • /
    • 2018
  • An analytic strategy to control the variable valve actuation applied to two intake valves (flow port intake valve and swirl port intake valve) was performed in this study. we considered the variation in phasing of intake valve profiles by using the Cam-in-Cam technology. The analytic model was implemented in the GT-Power simulation program and analyzed the result of regulated emissions such as, NOx and Soot, especially with IMEP characteristics. Namely, we meticulously investigated the sources of having effect on the amount of NOx and soot formation under the test conditions with retard timing of both flow port and swirl port intake valves for decreasing the opening duration by 35CAD. Also, we analyzed the effect of incylinder pressure and temperature with NOx variations and in-cylinder pressure and temperature on NOx variations and normalized turbulent intensity. Through this analysis, some useful results on the combustion and flow characteristics of the swirl port and flow port control of the intake valve were obtained by this study.

특성함수를 이용한 펌프 제어 밸브의 편심축 결정 (Determination of Eccentric Axis for Pump Control Valve Using the Characteristic Function)

  • 신명섭;이상일;박경진;윤준용
    • 한국유체기계학회 논문집
    • /
    • 제11권3호
    • /
    • pp.43-49
    • /
    • 2008
  • The pump control valve is a butterfly valve that has an eccentric rotating axis. It is not only used as a butterfly valve to control the flow rate or pressure, but also as a check valve to prevent backward flow. A new design method of eccentric rotating axis is proposed to design the valve. The height of the rotating axis is determined through flow field analysis. A general purpose of computational fluid dynamics software system, Fluent is used to simulate the fluid flow. Flow field analysis is performed for various heights of the rotating axis and different opening angles of the valve. A characteristic function is defined for estimating the flow characteristics based on the results of flow field analysis. The characteristic function is defined in order to determine the height of the rotating axis. An optimization problem with a characteristic function is formulated to determine the amount of eccentricity. The height of the Totaling axis of the valve is determined through solving the optimization problem.

탄성혈관 내 기계식 인공심장판막(MHV)의 거동 및 혈액 유동 특성에 관한 수치해석적 연구 (A Numerical Analysis on the Motion of Mechanical Heart Valve(MHV) and Characteristics of Blood Flow in an Elastic Blood Vessel)

  • 방진석;최청렬;김창병
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.154-161
    • /
    • 2005
  • In this study, the leaflet motion of a mechanical heart valve and the characteristics of two-dimensional transient blood flow in an elastic blood vessel have been numerically investigated by using fluid-structure interaction method. Here, blood has been assumed as a Newtonian, incompressible fluid. Pressure profiles have been used as boundary conditions at the ventricle and the aorta. As a result, closing motion of the leaflet is faster than opening one. While opening angles of leaflet grow up, vortex is detected at the sinus and backward of the leaflets. When the leaflet is fully closed, vortex is detected at the ventricle and at that moment maximum displacement of the elastic blood vessel is observed in the vicinity of the sinus region. Maximum displacement is caused in association with the blood flow that is oriented toward the elastic blood vessel.

Study of the Fluid Flow on Proportional Valve in Spool Displacement using CFD

  • Li, Kui-Ming;Choi, Yoon-Hwan;Lee, Ill-Yeong;Lee, Yeon-Won
    • 동력기계공학회지
    • /
    • 제19권2호
    • /
    • pp.22-26
    • /
    • 2015
  • The main objective of this work is to estimate the fluid flow of a proportional valve. The study is based on the classical compressible flow theory and the computations with the help of CFD based commercial software - ANSYS CFX. The fluid flow with the movement of spool along the sleeve is simulated. To change the spool moving from 0.4mm to 2.0mm, the moving mesh method with different condition of orifice is considered here. The results show that it is the highest at the 80 % (1.6mm) opening and at the 20 % (0.4mm) opening, is the lowest.

SimulationX®를 이용한 가변 사판식 액셜 피스톤 펌프의 밸브플레이트 노치 최적화에 관한 연구 (SimulationX®-based Modeling for Valve-Plate Notch Design of Variable Swash-Plate Axial Piston Pump)

  • 이산성;정원지;임동재;차태형;김수태;이정실;최경신
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.104-112
    • /
    • 2018
  • Considering the shape of a valve plate in design is important for reducing the pulsation phenomenon, which is a negative factor in pump performance. The purpose of this study is to propose an optimized method for a valve-plate V-type notch of a piston pump by modeling and simulation. The method uses $SimulationX^{(R)}$, a commercial hydraulic analysis program, and to provide data for the designing of the notch. The opening areas are determined by performing kinematic analysis of the notch part where the opening area changes rapidly. After applying the result analysis, the main effects on maximum pressure pulsation and maximum backflow according to the notch design factors are analyzed by using the full factorial method of experimental design. The optimized solutions are derived for the notch design variables, based on the analyzed data.

저속 2행정 디젤 기관의 소기 특성에 관한 연구 (A study on the scavenging characteristics in slow-speed two-stroke diesel engines)

  • 고대권;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권3호
    • /
    • pp.24-32
    • /
    • 1995
  • The scavenging characteristics have a great influence on the performance of a diesel engine, especially slow-speed two-stroke diesel engines which are usually used as a marine propulsion power plant, and they are greatly affected by the conditions in the cylinder, intake and exhaust manifolds, and the opening and closing timing of scavenging ports or exhaust valves during the gas exchange process. Besides, there are many other factors to affect the scavenging characteristics and these factors interact each other very complicatedly. Therefore the simulation program of the gas exchange process is very useful to improve and predict the scavenging characteristics, due to the high costs associated with redesign and testing. In this paper it was attenpted to investigate the effect of the variation of the pressure ratio of intake to exhaust manifolds, and the variation of the opening and closing timing of a exhaust valve by using a computational program for a three-zone scavenging model which was developed by authors. The computed results showed that the scavenging efficiency and delivery ratio increased considerably, but the trapping efficiency decreased with increasing of the pressure ratio of intake to exhaust manifolds. The scavenging efficiency, trapping efficiency, and th conditions of the cylinder gases were affected by the opening timing of the exhaust valve, but the delivery ratio by the closing timing.

  • PDF

가스 조절용 레귤레이터의 유동 및 성능해석 (Analysis of Flow and Performance of Regulator for Clean Gas Supply System)

  • 김명관;이연수;최우진;권오붕;박정
    • 동력기계공학회지
    • /
    • 제13권1호
    • /
    • pp.13-18
    • /
    • 2009
  • In this study, flow characteristics at the regulators, which is very important for clean gas supply systems for semiconductors and LCD industries, are investigated. Numerical simulations are carried out to visualize flows at regulators for several flow rates and to investigate pressure losses at some parts in the regulator. Velocity field at the regulator along with the detailed velocity field near the spring and near the valve is shown. New regulator models are proposed in this paper, and numerical simulations are also carried out to visualize flows at regulator for several flow rates, and to investigate pressure losses at the parts in new models. Pressure drops a lot across the valve seat. Pressure drop increases as mass flow rate increases. Especially for small opening, pressure drop increases rapidly as mass flow rate becomes large.

  • PDF