• 제목/요약/키워드: Valve performance

검색결과 1,244건 처리시간 0.027초

트럭 캡 틸팅 시스템의 성능 향상을 위한 전용 제어 밸브의 개발 (The Development of Exclusive Control Valve for Improving the Performance of Truck Cab Tilting System)

  • 박성환;이진걸
    • 한국정밀공학회지
    • /
    • 제18권3호
    • /
    • pp.90-98
    • /
    • 2001
  • In this paper, the development of exclusive control valve for improving the performance of truck cab tilting system is discussed. Cab tilting system is implemented to the heavy truck for the convenience of driver. However when tilting up or down, sudden swing of cab has brought discredit on user. To improve this phenomena it is inevitable to use counter balance valve. But because of high pressure and low flow characteristic, general counter balance valve is unsuitable to cab tilting system. Therefore, this paper presents the developments of exclusive return pressure control valve which prevents sudden swing of cab and verify the validity of design through the computer simulation.

  • PDF

시스템 식별을 이용한 비례솔레노이드밸브 위치제어기 설계 (Design of Position Controller for Proportional Solenoid Valve Using System Identification)

  • 정규홍
    • 유공압시스템학회논문집
    • /
    • 제7권4호
    • /
    • pp.23-31
    • /
    • 2010
  • As the analysis and design technologies for electro-magnetic actuation has advanced over the years, proportional solenoid valve is gaining acceptance in wide range of industrial and commercial applications because of its superior characteristics over the conventional AOV or MOV, such as improved performance, reduced maintenance costs. This research deals with the position controller design of two-stage flow control solenoid valve. Investigation of steady-state characteristics and dynamic model identification for pilot disc is performed. Least square method to minimize the error magnitude of frequency response between the closed-loop and target system is applied to the design of PI-controller gains. From the experiments of step and frequency response, it is concluded that the controller meets the performance specification of target system, which verifies the usefulness of controller design method for proportional solenoid valve.

  • PDF

전기 피드백 직동형 서보 밸브에 관한 역 분석 (Reverse Analysis on a Direct Dive Servo Valve with Electric Feedback)

  • 김성동;안희욱
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권4호
    • /
    • pp.22-28
    • /
    • 2013
  • Mechanical and electrical properties of a DDV(Direct Drive servo Valve) with electric feedback are analysed via reverse analysis technique in this work. The DDV is disassembled and mechanical parameters, such as spool mass, spring stiffness and port size are identified. The servo amplifier, which is built in the valve, is reversely analysed and the control scheme and gains for several control actions are also identified. The electrical feedback for spool displacement improves much better the valve performance, such as hysteresis and dynamic bandwidth frequency, than an ordinary mechanical feedback valve. Integrating control action with very large gain was adopted in the valve amplifier, and it seemed to give high performance.

수력댐 비상방류밸브에 대한 캐비테이션에 대한 연구 (The Study of the Cavitation for the Urgency Released Valve in Hydraulic Dam)

  • 노형운;이영호;이갑수
    • 한국유체기계학회 논문집
    • /
    • 제9권5호
    • /
    • pp.14-21
    • /
    • 2006
  • In general, the hollow jet valve, the fixed cone valve had been used for the urgency released or maintenance of the flow rate. Nowadays, the butterfly valve, the gate valve are applied in economic performance and operation maintenance more than the hollow jet valve, the fixed cone valve. However, in the case of butterfly valve, it should be required the strict application standard to the cavitation coefficient because the structural axis and disk were situated in pipe channel and the occurring the shock problem by Karman Vortex. Therefore, there were investigated the valve cavitation and accident investigation by field survey to establish the applicable extensibility of the urgency released valve as the preliminary study.

단엽식 고분자판막의 혈역학적 성능평가 (Hemodynamic Evaluation of Monoleaflet Polymer Valve)

  • 김상현;장병철
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권1호
    • /
    • pp.61-66
    • /
    • 1995
  • We have developed a monoleaflet polymer valve as an inexpensive and viable alternative, especially for short-term use in the ventricular assist device or total artificial heart. The frame and leaflet of the polymer valve were made from polyurethane. To evaluate the hemodynamic performance of the polymer valve a comparative study of flow dynamics past a polymer valve and a St. Jude Medicals prosthetic valve under physiological pulsatile flow conditions in vitro was made. Comparisons between the valves were made on the transvalvular pressure drop, regurgitation volume and maximum valve opening area. The polymer valve showed smaller regurgitation volllme and transvalvular pressure drop compared to the mechanical valve at higher heart rate. The results showed that the functional characteristics of the polymer valve compared favorably with those of the mechanical valve at higher heart rate.

  • PDF

인공심장판막의 개발과 동물실험 -인공심장판막의 2차 동물실험- (The Second Animal Tests of Artificial Heart Valves)

  • 김형묵
    • Journal of Chest Surgery
    • /
    • 제23권4호
    • /
    • pp.617-621
    • /
    • 1990
  • A heart supplies blood of about 15, 000 liters to each human organ in a day. A normal function of heart valves is necessary to accomplish these enormous work of heart. The disease of heart valve develops to a narrowness of a closure, resulting in an abnormal circulation of blood. In an attempt to eliminate the affliction of heart valves, the operative method to replace with artificial heart valves has developed and saved numerous patients over past 30 years. This replacement operation has been performed since early 1960`s in Korea, but all the artificial heart valves used are imported from abroad with very high costs until recent years. New artificial heart valves have been developed in Korea Advanced Institute of Science and Technology since early 1980`s. The first developed valve was designed with a free-floating pyrolytic carbon disk that is suspended in a titanium cage. The design of the valve was tested in vitro, and in animals in 1987. The results from this study was that the eccentrically placed struts creates a major and minor orifice when the disc opens and stagnation of flow in the area of the minor orifice has led to valve thrombosis. In this work, the design of the valve was changed from a single - leaflet valve to double - leaflet one in order to resolve the problems observed in the first - year tests. Morphological and hemodynamic studies were made for the newly designed valves through the in vitro and in vivo tests. The design and partial materials of the artificial heart valve was improved comparing with first - year`s model. The disc in the valve was modified from single - leaflet to bi - leaflet, and the material of the cage was changed from titanium metal to silicon - alloyed pyrolytic carbon. A test was made for the valve in order to examine its mechanical performance and stability. Morphological and hemodynamic studies were made for the valve that had been implanted in tricuspid position of mongrel dogs. All the test animals were observed just before the deaths. A new artificial heart valve was designed and fabricated in order to resolve the problems observed in the old model. The new valve was verified to have good stability and high resistance to wear through the performance tests. The hemodynamic properties of the valve after implantation were also estimated to be good in animal tests. Therefore, the results suggest that the newly designed valve in this work has a good quality in view of the biocompatibility. However, valve thrombosis on valve leaflets and annulus were found. This morphological findings were in accordance with results of surface polishing status studies, indicating that a technique of fine polishing of the surface is necessary to develop a valve with higher quality and performance.

  • PDF

3-방향 PWM 고속전자밸브의 본드그래프 모델링과 성능 해석 (Bondgraph Modeling of 3-way PWM High Speed Solenoid Valve and Performance Analysis)

  • 송한림;김현수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.283-288
    • /
    • 1995
  • Dynamic model of 3-way PWM high speed solenoid valve was derived considering reluctance and inductance of electromagnet through valve spool by Bondgraph modeling method. Computer simulations of hydraulic system with 3-wayhigh speed solenoid valve were performed and the results were compared to te experimental results in order to validate the PWM valve dynamic model obtained.

  • PDF

IDLE PERFORMANCE OF AN SI ENGINE WITH VARIATIONS IN ENGINE CONTROL PARAMETERS

  • Kim, D.S.;Cho, Y.S.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.763-768
    • /
    • 2006
  • Emission reduction in the cold start period of SI engines is crucial to meet stringent emission regulations such as SULEV Emissoin reduction is the starting point of the study in the which the variable valve timing (VVT) technology may be one promising method to minimize cold start emissions while maintaining engine performance. This is because it is possible to change valve overlap and residual gas fraction during cold start and idle operations. Our previous study showed that spark timing is another important factor for reducing cold-start emissions since it affects warm-up time of close-coupled catalysts (CCC) by changing exhaust gas temperature. However, even though these factors may be favorable for reduction of emissions, they may deteriorate combustion stability in these operating conditions. This means that the two variables should be optimized for best exhaust emissions and engine stability. This study investigated the effects of valve and spark timings in idle performance such as combustion stability and exhaust emissions. Experiments showed that valve timings significantly affected engine stability and exhaust emissions, especially CO and $NO_x$, due to change in residual gas fraction within the combustion chamber. Spark timing also affects HC emissions and exhaust gas temperature. Yet it has no significant effects on combustion stability. A control strategy of proper valve timing and spark timing is suggested in order to achieve a reduction in exhaust emissions and a stable operation of the engine in a cold start and idle operation.

FCEV 충전 시스템 체크밸브의 수소 유입 극한 온도 조건에 따른 유동 성능 인자 분석 (Analysis of Flow Performance Factors According to Extreme Temperature Conditions of Hydrogen Inflow of FCEV Charging System Check Valve)

  • 오승훈;서현규
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.514-525
    • /
    • 2023
  • This study conducted numerical simulations with the purpose of analyzing the impact of variations in outlet pressure conditions under extreme temperature conditions on the fluid dynamics and performance of a check valve utilized in hydrogen refueling systems. Under the extreme temperature conditions, changes in outlet pressure conditions of the check valve were investigated to analyze velocity distributions, pressure distributions, and temperature distributions in the operational and connection regions. The analysis results indicated that changes in outlet pressure had a significant influence on the internal temperature variation of the check valve. Furthermore, due to density variations in the connection region caused by the cooling effect of excessively cooled hydrogen, a bias in the primary flow direction towards the lower part of the valve outlet was observed in the outlet area. Through a comparison of the results of the valve's inherent flow performance, represented by the flow coefficient, it was observed that when the pressure difference between the inlet and outlet was below 0.37 MPa, sufficient flow was not ensured.