• Title/Summary/Keyword: Valve performance

Search Result 1,244, Processing Time 0.026 seconds

Measurment of Fluid Film Thickness on The Valve Plate in Oil Hydraulic Axial Piston Pumps (Part II : Spherical Design Effects)

  • Kim Jong-Ki;Kim Hyoung-Eui;Lee Yong-Bum;Jung Jae-Youn;Oh Seok-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.655-663
    • /
    • 2005
  • Tribological characteristics in the sliding parts of oil hydraulic piston pumps are very important in increasing overall efficiency. In this study, the fluid film between the valve plate and the cylinder block was measured by using a gap sensor and the mercury-cell slip ring unit under real working conditions. To investigate the effect of the valve shape, we designed three valve plates each having a different shape. One of the valve plates was without bearing pad, another valve plate had bearing pad and the last valve plate was a spherical valve plate. It was noted that these three valve plates observed different aspects of the fluid film characteristics between the cylinder block and the valve plate. The leakage flow rates and the shaft torque were also investigated in order to clarify the performance difference between these three types of valve plates. From the results of this study, we found that the spherical valve plate estimated good fluid film patterns and good performance more than the other valve plates in oil hydraulic axial piston pumps.

Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Fuwen Liu;Weihao Zhou;Xueguan Song
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4181-4194
    • /
    • 2022
  • Main steam safety valves are commonly used in nuclear power plants to provide final protections from overpressure events. Blowdown and dynamic stability are two critical characteristics of safety valves. However, due to the parameter sensitivity and multi-parameter features of safety valves, using traditional method to design and/or optimize them is generally difficult and/or inefficient. To overcome these problems, a surrogate model-based valve design optimization is carried out in this study, of particular interest are methods of valve surrogate modeling, valve parameters global sensitivity analysis and valve performance optimization. To construct the surrogate model, Design of Experiments (DoE) and Computational Fluid Dynamics (CFD) simulations of the safety valve were performed successively, thereby an ensemble surrogate model (E-AHF) was built for valve blowdown and stability predictions. With the developed E-AHF model, global sensitivity analysis (GSA) on the valve parameters was performed, thereby five primary parameters that affect valve performance were identified. Finally, the k-sigma method is used to conduct the robust optimization on the valve. After optimization, the valve remains stable, the minimum blowdown of the safety valve is reduced greatly from 13.30% to 2.70%, and the corresponding variance is reduced from 1.04 to 0.65 as well, confirming the feasibility and effectiveness of the optimization method proposed in this paper.

Performance Evaluation of High Pressure and High Pressure Drop Control Valve for Offshore Plants (해양플랜트용 고압·고차압 제어밸브의 성능 평가)

  • Kim, Kyuchul;Lee, Chiwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.767-773
    • /
    • 2013
  • A high-pressure, high-pressure drop control valve, which transforms the power transfer of a system by reducing the inlet pressure of 345bartothe outlet pressure of 112bar, is a fundamental component in an offshore plant process. With the increasingly growing market share of the maritime industry, this valve has been expected to be a high-value-added product. This study not only analyzes the relation between pressure drop and fluid velocity in a trim by using fluid analysis, but also examines the possibility of cavitation in a valve in addition to the plot for the extension of lifespan. Based on the analysis results, the design and production method of the valve are established, and accordingly, performance evaluation is carried out. It is demonstrated that the pressure drop from 345bar to 112bar is more feasible in the presence of the trim, which can induce a continuous and diminutive pressure drop in order to prevent cavitation in a high-pressure drop control valve. Furthermore, despite the fluid velocity near a seatring being found to be over 30m/s, the lifespan of the valve is determined to be adequate considering the operation condition of a prototype valve of 80%.

Optimization of Design Parameters of a Servo Valve Using the Genetic Algorithm (유전자 알고리즘을 이용한 서어보 밸브의 설계 파라미터 최적화)

  • Um, Tai-Joon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.464-468
    • /
    • 2000
  • This paper presents the optimization technique to select the design parameters of a hydraulic servo valve using the genetic algorithm. The dynamic performance is governed by the design parameters of the servo valve and they may be select by repeated number of simulations such that the desired performance is obtained. Using the genetic algorithm to optimize the design parameters, effective method is suggested. This method can be used for the design of the hydraulic systems as well as the servo valve.

  • PDF

The Effects of Distal Sinus on the Hydrodynamic Performance of the Prosthetic Heart Valves (인공판막 후부 공동부가 판막의 수력학적 성능에 미치는 영향)

  • 이계한;서종천
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.297-303
    • /
    • 1998
  • The sinus distal to the prosthetic heart valve influences the valve closure behavior and velocity field near the valve, therefore affects the hydrodynamic performance of the prosthetic heart valve. In order to study the effects of valve distal geometry on the hydrodynamic performance of the prosthetic valves, mechanical bileaflet valve(SJMV), monoleaflet polymer valve(MLPV) and trileaflet polymer valve(FTPV) are inserted in the test sections which have the straight and the sinus shape distal to the valve. Leakage volumes and systolic mean pressure drops are measured in the pulsatile mock circulation flow loop. Leakage volumes are slightly less and systolic mean pressure drops are higher in the sinus test section comparing to those in the straight test section, but the differences are statistically insignificant. Flow waveforms are analyzed in order to predict the valve closure behavior. The distal sinus does not affect the closure of the MLPV, but early valve closure of SJMV is observed in the sinus test section. This effect is more significant in FTPV, and the reverse flow peak of FTPV is reduced in the sinus test section. Therefore the sinus distal to the valve can reduce the reverse flow jet caused by sudden valve closure.

  • PDF

Design Optimization of Valve Support with Enhanced Seismic Performance (내진성능 향상을 위한 밸브지지대 최적형상 설계)

  • Kim, Hyoung Eun;Keum, Dong Yeop;Kim, Dea Jin;Kim, Jun Ho;Hong, Seong Kyeong;Choi, Won Mok;Kim, Sang Yeong;Seok, Chang Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.997-1005
    • /
    • 2015
  • In this study, modal analysis and equivalent static load analysis for valve supports of 26" gas piping in gas stations were conducted and the existing straight and inclined types of valve supports were compared using seismic performance testing. Also, a new valve support shape was suggested by optimizing position of fastener holes, width and thickness of the support, and size of bracket. Improvement in seismic performance by design optimization was verified through equivalent static load analysis. The seismic performance of the newly proposed valve support was greatly improved and the maximum displacement and maximum stress of the seismic load was about 20% lower than those of the existing valve support.

Simulations of the Performance Factors on Vacuum System

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • In this work, the effects of fairly influential factors on performance of vacuum system, such as constant pressure and outgassing effect were simulated to propose the optimum design factors. Outgassing effects of selected vacuum materials on the vacuum characteristics were simulated by the $VacSim^{Multi}$ simulation tool. This investigation examined the feasibility of reliably simulating the outgassing characteristics of common vacuum chamber materials (aluminum, copper, stainless steel, nickel plated steel, Viton A). The optimum design factors for vacuum systems were suggested based on the simulation results. And, the effects of throttle valve applications on vacuum characteristics were also simulated to obtain the optimum design model of variable conductance on high vacuum system. Simulated vacuum characteristics of the proposed modelling were agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve were schematized as the modelling of throttle valve for the constant process-pressure. Simulation results were plotted as pump-down curve of chamber and variable conductance of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably.

Performance Analysis of Air Operated Valve by Thermal Aging (공기구동밸브의 열노화에 따른 성능평가)

  • Lee, Sun-Ki
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.93-98
    • /
    • 2015
  • Nuclear power plants has a number of valves, which are operating at a high temperature-high pressure and radiation environment conditions. Nevertheless, it is important to maintain the reliability of the valves to ensure safe operation of the nuclear power plant. However, the aging of the valves by increasing of years of plant operation and the system transients due to the sudden load change are working the failures of the reliability of the valve. In this paper, we evaluate experimentally the performance change according to the thermal aging of the valve. Results show that the valve stem and the actuator leakages were enlarged by the thermal aging.

Shorted Turn in the Hybrid Magnet Engine Valve Actuator for Enhanced Dynamic Performance

  • Yi, Hwa Cho;Hwang, Ki Il;Kim, Jihun;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.466-472
    • /
    • 2013
  • This paper presents a new design of the hybrid magnet engine valve actuator using the shorted turn for enhanced dynamic performance. The quick response of coil electric current is the most important factor that determines the opening and closing performance of the hybrid magnet engine valve. The conventional hybrid magnet engine valve actuator, however, has a delayed initial electric current rising when it is driven by voltage control because of the coil inductance which is a typical characteristic of an electromagnetic coil. A shorted turn is newly placed into the upper yoke of the hybrid magnet engine valve actuator to reduce coil inductance and thus, to hasten the initial electric current rising. We performed a dynamic finite element analysis to demonstrate the improvement of the dynamic characteristics of the hybrid magnet engine valve actuator due to the shorted turn.

A Study on the Nonlinear Dynamic Modeling and Analysis of Damping Force Characteristics of Automotive Shock Absorber (차량용 충격흡수기의 비선형 동적거동 모델링 및 감쇠력 특성해석에 대한 연구)

  • 이춘태;곽동훈;정봉호;이지걸
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.104-111
    • /
    • 2003
  • The performance of shock absorber is directly related to the car behaviour and performance, both for handling and comfort. In this study, a mathematical nonlinear dynamic model and computational method are introduced to study the flow and performance of shock absorber. The flow characteristics of components(piston and body valve) are investigated and applied to dynamic modeling of shock absorber to predict the damping force. The simulation results agree with the test data well. The shock absorber model proposed in this paper is applicable as a part of a full vehicle suspension simulation.