• 제목/요약/키워드: Valve design system

검색결과 651건 처리시간 0.031초

엔진 실린더내 난류유동 측정과 정량화방법에 관한 연구 (A study on the measurement and characterization of tubulent flow inside an engine cylinder)

  • 강건용;엄종호;김용선
    • 오토저널
    • /
    • 제14권6호
    • /
    • pp.39-47
    • /
    • 1992
  • The engine combustion is one of the most important process affecting performance and emissions. One effective way to improve the engine combustion is to control motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence in a gasoline engine. This paper describes the measurement and characterization of mean velocity and turbulence intensity inside the cylinder of a 4-valve gasoline engine using laser Doppler velocimeter(LDV) under motoring(non-firing) conditions. Since the measured LDV data in each cycle show small cycle variation during compression stroke in the tested engine, the mean velocity and turbulence intensity are calculated by ensemble averaging method neglecting cycle variation effects. In the ensemble averaging method, the effects of the calculation window, in which velocities are assumed as the same crank angle, on mean velocity and turbulence intensity are fully investigated. In addition, the effects of measuring point on the flow characteristics are studied. With large calculation window, the mean velocity is shown to be less sensitive with respect to crank angle and turbulence intensity decrease in its absolute amplitude. When the piston approch to the top dead center of compression, the turbulence intensity is found to be homogeneous in the cylinder.

  • PDF

전해환원공정 관련 후처리공정 - 금속전환체 Smelting 및 용융염 고화 (Post Process Associated with the Electrochemical Reduction Process - Smelting of a Metal Product and Solidification of a Molten Salt)

  • 허진목;정명수;이원경;조수행;서중석;박성원
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.278-284
    • /
    • 2004
  • 전해환원공정에서 발생하는 금속전환체와 용융염을 각각 smelting하고 고화시키는 공정을 개발하였다. 진공조건에서 다단계 가열에 의하여 마그네시아 용기에 담긴 금속전환체를 잔류 용융염과 분리하고 용융시켜 금속 잉곳을 제조하는 운전방법을 제시하는 한편, 금속전환체의 분석을 수행하였다. 전해환원 공정에서 감압이송된 용융염의 경우에는 이송과 계량에 적합하게 이중 용기와 염밸브를 사용하여 일정 형상과 크기로 고화하는 신개념을 도출하였다. 본 연구의 결과는 한국원자력연구소 Advanced Spent Fuel Conditioning Process의 hot cell 실증시스템 설계에 적용되었다.

  • PDF

기액 이상류를 전파하는 약한 충격파에 관한 이론해석적 연구 (A Theoretical Analysis of the Weak Shock Waves Propagating through a Bubbly Flow)

  • 전구식;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1617-1622
    • /
    • 2004
  • Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data.

  • PDF

Internal Flow Analysis of a Tubular-type Small Hydroturbine by Runner Vane Angle

  • Nam, Sang-Hyun;Kim, You-Taek;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권7호
    • /
    • pp.1044-1050
    • /
    • 2008
  • Most of developed countries, the consumption of fossil fuels has been serious problems that cause serious environment pollution like acid rain, global warming. Also, we have faced that limitation fossil fuels will be exhausted. Currently, small hydropower attracts attention because of its small, clean, renewable, and abundant energy resources to develop. By using a small hydropower generator of which main concept is based on using the different water pressure levels in pipe lines, energy which was initially wasted by use of a reducing valve at the end of the pipeline, is collected by turbine in the hydropower generator. A propeller shaped hydroturbine has been used in order to use this renewable pressure energy. In this study, in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the flow coefficient are examined in detail. Tubular-turbine among small hydraulic power generation can be used at low-head. The purpose of this study is to research turbine's efficiency due to runner vane angle using CFD analysis.

에어 드라이어 제습성능 최적화 프로그램 개발 (A Study on Optimizing Drying Performance of Air Dryer)

  • 박원기;이희관;양균의;문상돈
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.70-75
    • /
    • 2010
  • Compressed air represents an energy source and an force-transmission medium for brake systems on medium-heavy and heavy-duty commercial vehicles. However, one disadvantage is the tendency of air to absorb moisture in the form of water vapor. This water vapor condenses once the air, which is heated during compression, cools back to ambient temperature upon emerging from the air compressor. The resulting condensation assumes the form of moisture in pneumatic lines, air tanks, cylinders and valve assemblies and can have negative consequences for the brake system and vehicle safety. The pneumatic systems on today's vehicles are equipped with air dryers, in which the supplied air is dried according to the adsorption principle. In the systems, the compressed air flows through a granular desiccant with molecular sieves which captures the water molecules.

왕복동식 압축기 피스톤의 역학적 거동특성 (Dynamic Behavior Characteristics of Piston in Reciprocating Compressor)

  • 조인성
    • Tribology and Lubricants
    • /
    • 제29권2호
    • /
    • pp.105-110
    • /
    • 2013
  • Refrigeration and air-conditioning compressors used in home appliances, including refrigerators and air conditioners, are typically hermetic-type reciprocating compressors. Because the shell is sealed by welding, it should be designed to have a semi-permanent life. The energy consumption of a hermetic-type reciprocating compressor is low, but because it operates continuously to maintain a constant temperature inside the refrigerator, it has a certain base load. In this type of compressor, the driving motor operates at a high speed (about 3,000 - 3,600 rpm), which causes valve damage, friction, wear, and high-frequency noise. Many studies have been conducted to solve these problems. To enhance the reliability and efficiency of the reciprocating compressor, the design conditions and operating environment of journal bearings should be considered. Dynamic behavior analysis should be carried out in terms of the discharge pressure. The results showed that the load (discharge pressure) increases in the forward lookup zone and decreases in the backward lookup zone. When the revolution speed is increased, the maximum load decreases in the region where the maximum load operates.

비례솔레노이드 형상 최적설계에 관한 연구 (A Study on Shape Optimization of Electro-Magnetic Proportional Solenoid)

  • 윤소남;함영복;강정호
    • 유공압시스템학회논문집
    • /
    • 제2권3호
    • /
    • pp.1-5
    • /
    • 2005
  • There are two types of solenoid actuator for force and position control of the fluid power system. One is an on-off solenoid actuator and the other is an electro-magnetic proportional actuator. They have some different characteristics for attraction force according to solenoid shape. Attraction force of the on-off solenoid actuator only depends on flux density. And the stroke-force characteristics of the proportional solenoid actuator are determined by the shape of the control cone. In this paper, steady state characteristics of the solenoid actuator for electro-hydraulic proportional valve determined by the shape of control cone are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attractive force in the control region independently on the stroke position. And the shape of control cone is optimized using 1+1 evolution strategy to get a constant force. In the optimization algorithm, control cone length, thickness and taper length are used as a design parameter.

  • PDF

지능형 디지털 재설계 기법을 이용한 전력 계통의 부하 주파수 제어를 위한 강인한 퍼지 제어기 설계 (Design of Robust Fuzzy Controller for Load-Frequency Control of Power Systems Using Intelligent Digital Redesign Technique)

  • Joo, Young-Hoon;Jeo, Sang-Won;Kwon, Oh-Sin
    • 한국지능시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.357-367
    • /
    • 2000
  • 본 논문은 조속기의 밸브 위치의 제한을 고려한 불확실 비선형 전력 시스템의 부파수 제어를 위한 강인 디지털 퍼지 제어기의 설계기법을 제시한다. TSK 퍼지 모델을 이용하여 비선형 전력 시스템을 모델링한다. 리아푸노프 안정도 해석 이론에 기반하여 파라미터 불확실성을 포함한 비선형 전력 시스템의 TSK 퍼지 모델을 위한 강인 안정 조겅을 유도한다. 유도된 강인 안정 조건은 선형 행렬 부등식의 형태로 나타난다. 또한 지는형 디지털 재설계 기법을 이용하여 연속 시간상에서 운용되는 전력 시스템을 위한 디지털 제어기를 설계한다. 컴퓨터 시뮬레이션을 통하여 본 논문에서 제안된 부하 주파수 제어기 설계 기법의 효용성을 보인다.

  • PDF

MR 유체를 이용한 새로운 액추에이터의 제안, 설계 및 제어 (Propose, Design and Control of a New Actuator Using MR Fluid)

  • 김정수;안경관;;안영공
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.111-112
    • /
    • 2006
  • A new MR cylinder with built-in valves using Magneto - Rheological fluid (MR valve) is proposed for fluid power control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. This MR cylinder, which is composed of cylinder with small clearance and piston with electromagnet, has the characteristics of simple, compact and reliable structure. This paper presents a method to control the pressure of MR cylinder by using Generalized Predictive Control (GPC) algorithm. The differential pressure is controlled by applying magnetic field intensity to MR fluid. The use of GPC controller is to generate a control sequence by minimizing a cost function in such a way that the future system output is driven close to reference over finite prediction horizons. Experimental results from real time control using GPC method compared with conventional PID control method are also shown in this paper.

  • PDF

Energetics of the Heart Model with the Ventricu1ar Assist Device

  • Chung, Chanil-Chung;Lee, Sang-Woo;Han, Dong-Chul;Min, Byoung-Goo
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권1호
    • /
    • pp.43-48
    • /
    • 1996
  • We investigated the energistics of the physiological heart model by comparing predictive indexes of the myocardial oxygen consumption (MOC), such as tension-time index (R), tension-time or force-time inteual (FTI), rate-pressure product (RPP), pressure-work index, and systolic pressure-volume area (PVA) when using the electro-hydraulic left ventricular device (LVAD). We developed the model of LVAD incorporated the closed-loop cardiovascular system with a baroreceptor which can control heart rate and time-varying elastance of left and right ventricles. On considering the benefit of the LVAD, the effects of various operation modes, especially timing of assistance, were evaluated using this coupled computer model. Overall results of the computer simulation shows that our LVAD can unload the ischemic (less contractile) heart by decreasing the MU and increasing coronary flow. Because the pump ejection at the end diastolic phase of the natural heart may increase the afterload of the left ventricle, the control scheme of our LVAD must prohibit ejecting at this time. Since the increment of coronary flow is proportional to the peak aortic pressure after ventricle contraction, the LVAD must eject immediately following the closure of the aortic valve to increase oxygen availability.

  • PDF