• 제목/요약/키워드: Valve design system

검색결과 651건 처리시간 0.028초

Evaluation of Letdown System Performance

  • Kim, Eun-Kee;Park, Byeong-Ho;Ko, Deug-Yoon;Kim, Seoug-Beom
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.413-418
    • /
    • 1995
  • A computer code to simulate the letdown system was developed to analyze the hydrodynamic transients. It was found that valve plug characteristics have a significant effect on the system stability, and that the plant specific valve control system setpoints should be determined based on the characteristics of procured valves by using a simulation code, before performing the plant startup test. The letdown system instability was evaluated for the feedback to the design of future plants.

  • PDF

Polymer MEMS 공정을 이용한 의료용 미세 부품 성형 기술 개발 (Development of micro check valve with polymer MEMS process for medical cerebrospinal fluid (CSF) shunt system)

  • 장준근;박찬영;정석;김중경;박훈재;나경환;조남선;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.1051-1054
    • /
    • 2000
  • We developed the micro CSF (celebrospinal fluid) shunt valve with surface and bulk micromachining technology in polymer MEMS. This micro CSF shunt valve was formed with four micro check valves to have a membrane connected to the anchor with the four bridges. The up-down movement of the membrane made the CSF on & off and the valve characteristic such as open pressure was controlled by the thickness and shape of the bridge and the membrane. The membrane, anchor and bridge layer were made of the $O_2$ RIE (reactive ion etching) patterned Parylene thin film to be about 5~10 microns in thickness on the silicon wafer. The dimension of the rectangular nozzle is 0.2*0.2 $\textrm{mm}^2$ and the membrane 0.45 mm in diameter. The bridge width is designed variously from 0.04 mm to 0.12 mm to control the valve characteristics. To protect the membrane and bridge in the CSF flow, we developed the packaging system for the CSF micro shunt valve with the deep RIE of the silicon wafer. Using this package, we can control the gap size between the membrane and the nozzle, and protect the bridge not to be broken in the flow. The total dimension of the assembled system is 2.5*2.5 $\textrm{mm}^2$ in square, 0.8 mm in height. We could precisely control the burst pressure and low rate of the valve varing the design parameters, and develop the whole CSF shunt system using this polymer MEMS fabricated CSF shunt valve.

  • PDF

프리필 밸브의 거동 예측용 유압 시스템의 압력/유량 맥동 분석 (Pressure/Flow Pulsation Characteristics of the Hydraulic System for Behaviour Prediction of the Prefill Valve)

  • 박정우;하룬 아흐마드 칸;정은아;권성자;윤소남;이후승
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권2호
    • /
    • pp.1-8
    • /
    • 2021
  • In this work, a circuit with a hydraulic power unit is formulated as a means of predicting the behavior of the prefill valve in the future. The behavior of the prefill valve can be examined by the measurements of the configured power unit, and the performance is determined by using hydraulic pumps, relief valves, and hydraulic hoses that make up the power unit. In particular, pressure/flow pulsation generated by hydraulic pumps can cause instability in the prefill valve and cause noise-induced degradation of the overall performance and reliability of the hydraulic system containing the prefill valve. Therefore, to study the behavior and performance of the prefill valve in a relatively accurate manner, the prediction of the characteristics of the hydraulic power unit driving the prefill valve is very important. In this study, the pulsation characteristics of the hydraulic pump were analyzed to theoretically demonstrate its relationship with different settings of the power unit, such as relief valve pressure settings and the presence/absence of the hose.

Structural Stability of High-temperature Butterfly Valve Using Interaction Analysis

  • Lee, Moon-Hee;Son, In-Soo
    • 한국산업융합학회 논문집
    • /
    • 제23권6_1호
    • /
    • pp.881-888
    • /
    • 2020
  • A butterfly valve is a valve that adjusts flow rate by rotating a disc for about 90° with respect to the axis that is perpendicular to the flow path from the center of its body. This valve can be manufactured for low-temperature, high-temperature and high-pressure conditions because there are few restrictions on the used materials. However, the development of valves that can be used in a 600℃ environment is subject to many constraints. In this study, the butterfly valve's stability was evaluated by a fluid-structured interaction analysis, thermal-structure interaction analysis, and seismic analysis for the development of valves that can be used in high-temperature environments. When the reverse-pressure was applied to the valve in the structural analysis, the stress was low in the body and seat compared to the normal pressure. Compared with the allowable strength of the material for the parts of the valve system, the minimum safety factor was approximately 1.4, so the valve was stable. As a result of applying the design pressures of 0.5 MPa and 600℃ under the load conditions in the thermal-structural analysis, the safety factor in the valve body was about 3.4 when the normal pressure was applied and about 2.7 when the reverse pressure was applied. The stability of the fluid-structure interaction analysis was determined to be stable compared to the 600℃ yield strength of the material, and about 2.2 for the 40° open-angle disc for the valve body. In seismic analysis, the maximum value of the valve's stress value was about 9% to 11% when the seismic load was applied compared to the general structural analysis. Based on the results of this study, the structural stability and design feasibility of high-temperature valves that can be used in cogeneration plants and other power plants are presented.

LNG 선박용 안전밸브를 지나는 기체유동에 관한 연구 (A Study of the Gas Flow through a Safety Valve for LNG Ship Engine)

  • 이준희;김희동;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.441-447
    • /
    • 2005
  • The present study is aimed at understanding the flow physics associated with a safety valve applied to LNG ship engines. One-dimensional gasdynamic analyses and axisymmetric, compressible Navier-Stokes computations have been carried out to provide a qualitative and quantitative knowledge base for an effective design of the safety valve. Gasdynamic forces and thrust coefficients are obtained regarding a change in chamber pressure and distance between the nozzle exit and valve sheet which are major parameters to offer a variation in the flow feature. The present results show that the control of the passage area between the nozzle exit and valve sheet can attenuate the strength of shockwave generated in front of the valve sheet, which causes harm to stable system operation.

  • PDF

인공위성 추진계통 관로내의 수격효과에 관한 실험적 연구 (An Experimental Study on Water-Hammer Effect for Spacecraft Propulsion System)

  • 권기철;이은상;박상민;강신재;노병준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.288-293
    • /
    • 2001
  • This paper presents the water-hammer effect due to the rapid opening and closing of isolation valve and thruster valve in the spacecraft propulsion system. The single propellant feed system was modeled to investigate the maximum peak pressure due to the water-hammer effect. The test parameters are tank supply pressure, shape and throat length of orifice and line length. Kerosene was used as the inert simulant propellant liquid instead of hydrazine. As downstream line length after isolation valve increased from 1.5 to 2.5m, the maximum line-filling water-hammer peak pressure decreased, but the average time interval between peak pressures increased. The maximum line-filling water-hammer peak pressure with orifice was lower than without orifice, and the maximum line-filling water-hammer peak pressure with orifice at the back of isolation valve was lower than with orifice in front of isolation valve. Without orifice, the maximum water-hammer peak pressure due to the rapid opening and closing of the thruster valve was about 126% of tank supply pressure. With orifice, it decreased. As orifice throat length increased, it decreased. The maximum water-hammer peak pressure due to the rapid closing of the thruster valve with converging-diverging orifice was lower than normal orifice. It was found that the orifice as a means of pressure drop was very effective to reduce the water hammer peak pressure at the thruster valve. The results of this study can be used for the design of spacecraft liquid propulsion feed system.

  • PDF

메인 컨트롤밸브의 해석모델 개발 및 검증 (Development and Verification of Analytical Model of a Main Control Valve)

  • 김동명;이정민;정원지;장주섭
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권2호
    • /
    • pp.39-48
    • /
    • 2015
  • In order to control the actuators of hydraulic machinery such as excavators, various control valves are typically assembled in a single block. Such a control block is called a main control valve(MCV). In this paper, we analyzed the working principle and the particular purpose of the design of all valves included in the MCV system. To Examine the reliability of the analysis model, the pressure drop of the MCV at each port was measured. The authors developed an analytical model of the control valve(main spool, load poppet, pressure relief, make up, and regeneration). The authors considered the notch shape of the spool while developing the analytical models of the main spool valve. Most importantly, at the stage before the analysis model was applied in the design tuning, the reliability was ensured by comparing the analysis results with the test results. This paper showed a process of developing an analysis model that can be utilized in the design and tuning stages.

유동 안내부 모델링 자동화 및 근사모델을 이용한 자동차용 도어트림의 밸브 게이트 위치 최적화 (Optimization of Valve Gates Locations Using Automated Runner System Modeling and Metamodels)

  • 조용수;박창현;표병기;이병옥;최동훈
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.115-122
    • /
    • 2014
  • Injection pressure is one of factors that influence part quality. In this paper, injection pressure was minimized by optimizing valve gate locations. In order to perform design optimization, MAPS-3DTM (Mold Analysis and Plastic Solution-3D) was used for injection mold analysis and PIAnOTM (Process Integration, Automation and Optimization) was used as process integration and design optimization. Also we adapted meta models based on design of experiments for efficiency. By using introduced methodology, we were able to obtain a result so that maximum injection pressure reduced by 28% compared to the initial design. And the validity of the proposed method could also be demonstrated.

추진제탱크 가압용 솔레노이드밸브의 작동특성 분석 및 해석 (Analysis of Dynamic Characteristics and Performance of Solenoid Valve for Pressurization Propellant Tank)

  • 장제선;김병훈;한상엽
    • 한국추진공학회지
    • /
    • 제17권2호
    • /
    • pp.128-134
    • /
    • 2013
  • 우주발사체 추진기관 공급계에서 2-way 솔레노이드밸브는 제어시스템의 명령에 의해 추진제 탱크를 가압하여 탱크내의 압력을 조절한다. 가압용 솔레노이드밸브의 제작에 앞서 설계검증 및 기본적인 작동특성을 분석하기 위해 AMESim상용코드를 이용하여 해석모델을 수립하였다. FLUENT 상용코드를 이용하여 내부유동해석을 수행하여해 해석의 정확도를 높이고, 모델을 검증하기 위해 동특성 해석을 통해 입구압력에 따른 작동시간을 시험결과와 비교하였고 잘 일치함을 확인하였다. 또한 해석 모델을 이용하여 컨트롤밸브와 기본밸브의 설계변수에 대한 밸브의 동특성 해석을 수행하였다. 해석을 통해 기본밸브의 시트형상과 직경비에 따른 밸브의 작동시간, 작동성능, 개폐압력을 예상하였다.