• Title/Summary/Keyword: Valve Opening Angle

Search Result 48, Processing Time 0.019 seconds

Effects of the Lift Valve Opening Area on Water Hammer Pump Performance and Flow Behavior in the Valve Chamber

  • Saito, Sumio;Dejima, Keita;Takahashi, Masaaki;Hijikata, Gaku;Iwamura, Takuya
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.3
    • /
    • pp.109-116
    • /
    • 2012
  • Water hammer pumps can effectively use the water hammer phenomenon for water pumping. They are capable of providing an effective fluid transport method in regions without a well-developed social infrastructure. The results of experiments examining the effect of the geometric form of water hammer pumps by considering their major dimensions have been reported. However, these conventional studies have not fully evaluated pump performance in terms of pump head and flow rate, common measures of pump performance. The authors have focused on the effects on the pump performance of various geometric form factors in water hammer pumps. The previous study examined how the hydrodynamic characteristics was affected by the inner diameter ratio of the drive and lift pipes and the angle of the drive pipe, basic form factors of water hammer pumps. The previous papers also showed that the behavior of water hammer pump operation could be divided into four characteristic phases. The behavior of temporal changes in valve chamber and air chamber pressures according to the air volume in the air chamber located downstream of the lift valve was also clarified in connection with changes in water hammer pump performance. In addition, the effects on water hammer pump performance of the length of the spring attached to the drain valve and the drain pipe angle, form factors around the drain valve, were examined experimentally. This study focuses on the form of the lift valve, a major component of water hammer pumps, and examines the effects of the size of the lift valve opening area on water hammer pump performance. It also clarifies the behavior of flow in the valve chamber during water hammer pump operation.

Study on Flow Characteristics for Eccentric Shaft in the Butterfly Valve System (축편심 버터플라이 밸브의 유동특성에 관한 연구)

  • Park, S.M.;Choi, H.K.;Yoo, G.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.587-591
    • /
    • 2011
  • To improve the performance of the control butterfly valve seals are used to eccentric shaft. In this case, vertical opening gas of the butterfly valve is non-symmetrical, which will change the flow pattern around the valve. In this study, the eccentric drive shaft of the butterfly valve to change flow characteristics are performed numerically. Flow pattern and pressure drop are investigated as the valve opening angle increases for a given mass flow rate. The valve flow coefficient is compared to the without eccentric shaft.

  • PDF

A Study on Flow Coefficient and Flow Characteristics for Butterfly Valve by Numerical Analysis (수치해석에 의한 버터플라이 밸브의 유량계수 및 유동특성에 관한 연구)

  • Kwak, Kyung-Min;Cho, Ji-Sung;Kim, Jin-Dae;Lee, Jung-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.62-66
    • /
    • 2012
  • The objective of this study is to simulate flow coefficient and flow characteristics such as velocity and pressure distribution for butterfly valve. Butterfly valves used in this study are 65A, 80A and 100A, in size, and of which the opening angle is varied. The flow coefficient, Kv, increases as the disc opening and valve size are increase. When using flow coefficient meanwhile specific curve of flow rate is also determined. The flow velocity between disc and seat increase as the disc opening decrease. The re-circulating zone is also observed in downstream behind disc.

Fuel Distribution Characteristics in a Swirl Type GDI Engine (스월형 GDI 엔진의 연료분포특성 연구)

  • 김기성;박상규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.49-59
    • /
    • 2002
  • For the purpose of helping development of a GDI(Gasoline Direct Injection) engine, the spray behaviors and fuel distributions were investigated in a single cylinder GDI engine. The experimental engine is a swirl type GBI engine with a SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used for the measurement of the fuel distributions. The effects of SCV opening angle and the Injector specifications, such as the spray cone angle and the offset an91e on the fuel distributions characteristics were investigated. As a result, it was found that the SCV opening angle had a great effect on the fuel distributions in the late stage of compression process by changing flow fields in the combustion chamber.

  • PDF

Disk Shape Design of Liquid Hydrogen Needle Valve with Various Inherent Flow Characteristics (다양한 고유유량 특성을 갖는 액체수소용 니들밸브의 디스크 형상 설계)

  • NAGYUMI HWANG;HYOLIM KANG;JUNGHO KANG;SEUNGHO HAN
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.4
    • /
    • pp.363-369
    • /
    • 2024
  • Needle valves are instrumentation devices with quick-opening inherent flow characteristics, used in pipelines requiring rapid flow supply immediately upon opening the flow path. For needle valves applied in liquefied hydrogen plants operating in cryogenic environments, it is necessary from the initial design stage to have various inherent flow characteristics in addition to quick-opening, depending on the intended usage. In this study, the inherent flow characteristics of a 1/2'' liquid hydrogen needle valve were evaluated through computational fluid dynamics analysis. Disk shapes exhibiting various inherent flow characteristics were proposed by deriving the flow coefficient (Cv) according to changes in disk shapes. Among the disk shapes that directly affect the Cv, the disk length and slope angle were selected, and case studies were conducted with nine parameter combinations. From the results of the normalized Cv regarding to opening rates, disk lengths and slope angles exhibiting quick-opening, equal-percentage, and linear inherent flow characteristics were determined.

Structural Safety of Lightweight Valve Disc by Topology Optimization Design based on Computational Simulation (전산 시뮬레이션 기반의 위상최적설계에 의한 경량 밸브디스크의 구조적 안전성)

  • Kim, Taehyung
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.25-33
    • /
    • 2020
  • In this study, flow and structural computational analysis were performed to investigate the structural safety of the lightweight butterfly valve disc designed by topology optimization. After flow analysis, as the opening angle increased, the flow coefficient increased non-linearly and showed a gentle slop. When the opening angle was 12 degree, the cavitation could be predicted. After FE analysis, all FE von-Misses stresses of the lightweight disc were smaller than the yield strength of the material, and all FE maximum deformations were also smaller than the conservative deformation of the previous study. Ultimately, it was confirmed that the structural safety of the lightweight valve disc based on computational analysis is effective.

A Numerical Study on Effects of Flow Analysis with Flow Control Valve on Turbine of OWC Type Wave Power Generator (유량 조절 밸브가 탑재된 진동수주형 파력발전장치의 터빈 내 유동해석을 위한 수치해석 연구)

  • Ro, Kyoung-Chul;Oh, Jae-Won;Kim, Gil-won;Lee, Jung-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.801-808
    • /
    • 2021
  • In this paper, a numerical analysis was conducted on the effect of the flow control valve of a oscillation water column(OWC) type wave power generator turbine. The OWC wave power turbine operates with compressed air in the air chamber according to the change of wave height. When the wave height changes rapidly, a flow control valve is required due to overload of the turbine and reduced efficiency. Therefore, in this paper, a flow control valve with an opening angle of 60 degrees was installed in the front of the turbine, and the pressure drop, torque, and overall performance were calculated according to the change of turbine RPM and flow rate of turbine inlet. In conclusion, the flow control valve with an opening angle of 60 degrees affects when the turbine rotates at low rotation and the inlet flow rate is large. But it does not have a significant effect on overall turbine performance and it is necessary to find the optimal angle in the future works.

A Study on the Structural Safety Evaluation of Light Weight Damper for Offshore Rigs (해양시추선용 경량수밀댐퍼의 구조안전성 평가에 관한 연구)

  • Jang, Ji-Seong;Ji, Sang-Won;Han, Seung-Hun
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.80-86
    • /
    • 2016
  • In this study, The watertight damper was designed to improve conventional DN 350A butterfly valve. The FSI(Fluid-Structure Interaction) analysis has performed to investigate the safety factor for the watertight damper. When watertight damper of disk was closed, the disk of pressure value is constant. However depending on the opening angle of disk, the flow velocity and pressure are changed. The maximum velocity was appeared at the end of disk on the small outlet area of duct. When the opening angel of disk is $90^{\circ}$, the maximum velocity was appeared at the center of ending disk. So we were found the opening angle of disk is bigger, the flow rate is increased and velocity is also increased from the result of FSI analysis. We can find the least deformation and stress when the opening angel of damper is $90^{\circ}$. When the $45^{\circ}$ opening angle of disk, the largest deformation and stress was found and the minimum safety factor 1.3 was calculated. As a result, we found that the structure of watertight damper is safe enough irrespective of opening angel.

An Experimental Study on the Tappet Spin for a Direct Acting Valve Train System (직접 구동형 밸브 트레인 시스템의 태핏 회전에 관한 실험적 연구)

  • Cho, Myung-Rae;Kim, Hyung-Jun;Moon, Tae-Seon;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1179-1184
    • /
    • 2003
  • The technique for measuring the rotational speed of tappet in direct acting type valve train system has been developed. The optic signal monitoring system with laser and optic fiber was designed to follow the signal of tappet rotation. The system was based on ON/OFF signal generation from the additional encoder teeth under the tappet with optic fibers attached photo transistor. The data showed that tappet rotation was affected by offset, oil temperature and cam shaft operating speed. Also it was found that tappet rotation increases with oil temperature. Tappet spin was delayed 10∼s20$^{\circ}$ cam angle after valve opening. The instantaneous rotational speed of tappet was reciprocal to cam shaft speed and the tappet and the cam angle ratio was located in the range of 0.1∼0.3.

A Study on the Secondary Atomization Characteristics of Liquid Fuel in the Perforated Throttle Valve (다공 스로틀 밸브에서의 액체 연료의 2차 미립화 특성에 관한 연구)

  • Lee, C.S.;Lee, K.H.;Cho, B.O.;Oh, K.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.55-62
    • /
    • 1996
  • In a fuel injection engine, atomization of liquid fuel and mixture formation process has influenced(or affected) directly on the engine performance and pollutant emission. In this study, the characteristics of fuel spray and the behaviors of secondary atomization developed at the downstream of the valves were investigated using an image processing method. Solid and perforated valves are chosen in order to evaluate the valve performance in terns of air flow rate, valve opening angle and valve shape. Experimental results clearly indicate that the spray atomization quality can be improved by increasing the perforated rat io and the blockage rat io in the perforated valve, the characteristics of spray atomization is improved by using the perforated valve with high perforated rat io and blockage ratio.

  • PDF