• Title/Summary/Keyword: Valve Gate

Search Result 77, Processing Time 0.028 seconds

The Study of the Decision Criteria for the Urgency Released Valve in Hydraulic Dam (수력댐 비상방류밸브의 선정조건에 관한 연구)

  • Roh, H.W.;Lee, G.S.;Park, Y.M.;Kim, B.S.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.613-616
    • /
    • 2005
  • In general, the hollow jet valve, the fixed cone valve had been used for the urgency released or maintenance of the flow rate. Nowadays, the butterfly valve, the gate valve are applied in economic performance and operation maintenance more than the hollow jet valve, the fixed cone valve. However, in the case of butterfly valve, it should be required the strict application standard to the cavitation coefficient because the structural axis and disk were situated in pipe channel and the occurring the shock problem by Karman Vortex. And, the judgment data for choice were slight lowdown in water supply and drainage facilities standard or Japanese penstock technology standard, various standard of KOWACO etc. Therefore. there were investigated the valve inside phenomenon (cavitation, disk chattering, vibration) by velocity of flow and the stability examination of body by high velocity of flow through flow scale model test using the numerical analysis and PIV to establish the applicable extensibility of the butterfly valve for the urgency released valve.

  • PDF

Development on the Structural Analysis Code of the Air-Operated Valve (공기구동 밸브의 구조해석 코드개발)

  • Lee Hyun-Seung;Lee Young-Shin;Cho Taik-Dong;Ko Sung-Ho;Shin Sung-Ky;Lee Ho-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.575-580
    • /
    • 2006
  • Air-operated valves are extensively used for process control and system isolation functions in nuclear power plant, where the safety is primary issue. The purpose of this study is to develop structural analysis code of various air-operated valves such as globe valve, gate valve, and butterfly valve. The thrust formula is derived for valve with the expected weak areas. The expected weak areas are referred from EPRI data. The structural stress analysis is carried out by analytical and commercial FEM code, ANSYS 8.0. The numerical results are compared together and verified on program procedures.

  • PDF

Pressure Locking and Thermal Binding Analysis of the RHR Motor Operated Valve (잔열제거계통 모터구동밸브의 압력잠김 및 열고착 현상 분석)

  • Song, Eun-Sil;Kim, Tae-Il;Lee, Kwang-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.630-635
    • /
    • 2001
  • The stem thrust required to unwedging a gate valve is influenced by the pressure and temperature when the valve is closed and by the changes in these conditions between closure and opening. "Pressure Locking" and "Thennal Binding" refer to situations where pressure and temperature effects cause the unwedging load to be much higher than normal. A model of these phenomena has been developed. The effects of pressure and temperature are analyzed to determine the change in this disk-to-seat "interference". Flexibilities or Stiffness of the disk and body strongly influence the unwedging thrust. Calculation and limited comparison to data have been performed for the RHR motor operated valve designs and scenario. Pressure changes can increase the unwedging thrust when bonnet pressure exceeds the pressure in the adjacent piping and temperature changes can increase the unwedging thrust when a temperature change after closure produces an increase in the disk-to-seat interference.

  • PDF

Leak Evaluation for Power Plant Valve Using Multi-Measuring Method

  • Lee, Sang-Guk;Park, Jong-Hyuck;Kim, Young-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.469-476
    • /
    • 2008
  • Condition based maintenance(CBM) for the preventive diagnosis of important equipments related to safety or accident in power plant is essential by using the suitable methods based on actual power plant conditions. To improve the reliability and accuracy of the measured value at the minute leak situation, and also to monitor continuously internal leak condition of power plant valve, the development of a diagnosis and monitoring technique using multi-measuring method should be performed urgently. This study was conducted to estimate the feasibility of multi-measuring method using three different methods such as acoustic emission(AE) method, thermal image measurement and temperature difference$({\Delta}T)$ measurement that are applicable to internal leak diagnosis for the power plant valve. From the experimental results, it was suggested that the multi-measuring method could be an effective way to precisely diagnose and evaluate internal leak situation of valve.

Study for the Operational Characteristics of Closed Circuit Hydraulic System of Turnover-Type Sluice Gate (전도 수문용 폐회로형 유압장치의 작동 특성에 관한 연구)

  • Lee, Seong-Rae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.897-902
    • /
    • 2007
  • The turnover-type sluice gate is typically actuated by the open circuit hydrauic system since the single-rod cylinder is used rather than the double-rod cylinder. However, here the closed circuit hydrauic system is applied for the operation of turnover-type sluice gate for the purpose of convenient operation. The closed circuit hydraulic system of turnover-type sluice gate is composed of a bi-directional pump, single-rod cylinders, pilot operated check valves, check valves and a counter balance valve. The usefulness of the closed circuit hydraulic system is verified for the several operational conditions by the computer simulations.

  • PDF

Study of Development for Multi-Cavity Preform Mold (Multi-Cavity Preform 금형시스템 개발에 관한 연구)

  • 서태일;허영무;이성희;이영훈;박용석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.381-388
    • /
    • 2003
  • The paper presents our study of development for multi-cavity preform mold system which consists of hot runner system and valve gate. For this purpose, stretching blow molding process and preform injection process were simulated by Polyflow and Moldflow. Based on various results of the preform injection process analysis, process planning was established. The sectional thickness distribution of preform was optimized. Preform injection mold system was designed by these technical analysis data. Finally, 24-cavity preform mold system was successfully developed.

  • PDF

A Numerical Analysis Study on the Characteristics for Packing Design of Cryogenic Gate Valve (초저온 게이트 밸브용 패킹의 수치해석 연구)

  • Kim, Si-Pom;Jeon, Rock-Won;Hwang, Il-Ju;Lee, Jae-Hun;Kang, Dae-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.160-165
    • /
    • 2012
  • The packing, among the components comprising the gate valve, is used to sustain the air-tightness and the study on change of shape or pattern has been carried out to maximize the functions, but the study on changing the location or the size of the packing in a bid to prevent the freezing has rarely been implemented. Thus, This study is intended to evaluate the thermal strain of packing by heat transfer from territory of extremely low temperature as well as the temperature distribution to the upper part of the packing using numerical analysis method.

Optimization of Valve Gates Locations Using Automated Runner System Modeling and Metamodels (유동 안내부 모델링 자동화 및 근사모델을 이용한 자동차용 도어트림의 밸브 게이트 위치 최적화)

  • Joe, Yong-Su;Park, Chang-Hyun;Pyo, Byung-Gi;Rhee, Byung-Ohk;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2014
  • Injection pressure is one of factors that influence part quality. In this paper, injection pressure was minimized by optimizing valve gate locations. In order to perform design optimization, MAPS-3DTM (Mold Analysis and Plastic Solution-3D) was used for injection mold analysis and PIAnOTM (Process Integration, Automation and Optimization) was used as process integration and design optimization. Also we adapted meta models based on design of experiments for efficiency. By using introduced methodology, we were able to obtain a result so that maximum injection pressure reduced by 28% compared to the initial design. And the validity of the proposed method could also be demonstrated.

Manufacturing and Performance Test of Obsolete Valve in NPP using DED Metal 3D Printing Technology (원전 단종 밸브의 DED 방식 금속 3D프린팅 제작 및 성능시험)

  • Kyungnam Jang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • The 3D printing technology is one of the fourth industrial revolution technology that drives innovation in the manufacturing process, and should be applied to nuclear industry for various purposes according to the manufacturing trend change. In nuclear industry, it can be applied to manufacture obsolete items and new designed parts in advanced reactors or small modular reactors (SMRs), replacing the traditional manufacturing technologies. A gate valve body was manufactured, which was obsolete in nuclear power plant, using DED(Directed Energy Deposition) metal 3D printing technology after restoring design characteristics including 3D design drawing by reverse engineering. The 3D printed valve body was assembled with commercial parts such as seat-ring, disk, stem, and actuator for performance test. For the valve assembly, including 3D printed valve body, several tests were performed, including pressure test, end-loading test, and seismic test according to KEPIC MGG and KEPIC MFC. In the pressure test, hydraulic pressure of 391kgf/cm2 was applied to 3D printed valve body, and no leak was detected. Also the 3D printed valve assembly was performed well in end-loading and seismic tests.