• Title/Summary/Keyword: Valve Eccentricity Ratio

Search Result 13, Processing Time 0.018 seconds

Development of Measurement System for Tappet Rotation in the Valve Train System (밸브 트레인 시스템의 태핏 회전 측정 장치의 개발)

  • 김형준;조명래;신흥주;한동철
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.81-86
    • /
    • 1998
  • The purpose of this paper is to measure the rotational speed of tappet in OHC valve train system. Tappet has eccentricity about cam center, which induces the tappet rotation and prevents from wear. In this paper, the experimental test rig which composes of one cam system is developed to measure the tappet rotation by using the laser generating system, rotary encoder, optical fiber, and photo transistor. The direction of tappet rotation is judged from the oder of optical signal. As results of experiment, average and instant rotational speed and average rotation angle per one cam revolution are presented. Measured results show that eccentricity ratio is dominant factor for the tappet rotation, and tappet is rotated at the base circle.

A Study on the Characteristics of Intake Port Flow and Performance with Swirl Ratio Variance in a Turbocharged D.I. Diesel Engine (과급 디젤엔진에서 선회비 변경에 따른 흡기 포트유동 및 엔진성능 특성에 관한 연구)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1185-1194
    • /
    • 2000
  • The characteristics of intake port flow and engine performance with swirl ratio variance in a turbocharged D.I. diesel engine were studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. Through these experiments it can be expected to satisfy performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer, NOx and smoke were measured by gas analyzer and smoke meter. The results of steady flow test are as follows; as the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. Also we realized that there is a trade-off that the increase of swirl ratio decreases mean flow coefficient and increases the Gulf factor. And the optimum parameters to meet performance and emission through engine test are as follows; the swirl ratio 2.43, injection timing BTDC 13oCA and compression ratio 15.5.

Effects of the Inlet Flow Conditions of a Helical Intake Port on the In-cylinder Swirl Characteristics (나선형 흡기포트 입구의 유동조건이 실린더 내 선회특성에 미치는 영향에 관한 연구)

  • 이지근;강신재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.9-18
    • /
    • 2000
  • Combustion and emission characteristics in a direct injection diesel engine is closely related to the intake port system. It is therefore important to understand the swirl flow characteristics formed by a helical intake port. However there are still many uncertainties. The purpose of this experimental study is to investigate the effects of the valve eccentricity ratio and the inlet flow conditions of a helical intake port on the characteristics of an in-cylinder swirl flow. A steady state flow test rig consisted of ISM(impulse swirl meter), LFM(laminar flow meter) and cylinder head with a helical intake port was used. The swirl ratio(Rs) and mean flow coefficient(Cf(mean)) with inlet flow conditions were measured. The results of these experiment can be summarized as follows. Swirl flow characteristics of a helical intake port are affected by the inlet flow conditions, and especially they are much affected by the length of a manifold runner and the rotational angle of a curved manifold runner.

  • PDF