• Title/Summary/Keyword: Valve Dynamics

Search Result 212, Processing Time 0.026 seconds

A Numerical Study on the Opening Characteristics of High Pressure Hydrogen Valves (고압수소 밸브의 시동 특성에 관한 수치적 연구)

  • SANGMIN KIM;JINSUNG KIM;YOUNGJUN CHO;SIWON YANG;MOONSUNG SHIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.689-697
    • /
    • 2023
  • The high-pressure hydrogen valve is intended to supply hydrogen charged at high pressure in the hydrogen tank to the fuel cell stack, which decompresses high-pressure hydrogen gas to low pressure and primarily limits the excessive flow. It consists of a pilot valve, a main valve, and a excessive flow valve to operate in a wide pressure range from 2 to 70 MPa of charging pressure. The opening characteristics of the valve were confirmed by computation fluid dynamics applying the moving grid technique. The behavior of the valve was predicted by predicting the force acting on the valve over time. In addition, the difference in behavior according to supply pressure was compared.

CFD Analysis and Explosion Test of a Crankcase Relief Valve Flame Arrester for LNG-fuelled Ships (LNG 연료 추진 선박용 크랭크실 릴리프 밸브 화염방지기의 유동해석 및 폭발시험)

  • Lee, Hyo Ryeol;Ahn, Jung Hwan;Kim, Dong Keon;Ahn, Byoung Hoon;Kim, Hwa Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • Growing concerns about air pollution have led to increased demand for liquefied natural gas (LNG)-fuelled ships that have crankcases equipped with explosion relief valves to relieve excessive crankcase pressures and stop the flames emitted from the crankcase. The results of a computational fluid dynamics (CFD)-based feasibility analysis of the crankcase relief valve flame arrester design conducted using ANSYS CFX V14 showed that the inlet and outlet relief valve temperatures differed by $350-700^{\circ}C$. An explosion test was performed based on European standard EN14797 to evaluate the flame transmission and mechanical integrity of the valve. No flame transmission from the pressure vessel to the exterior was detected, and the mechanical integrity of the valve was confirmed. Thus, the relief valve components were found to be safe from the viewpoint of fracture.

A Study on Dynamic Characteristics of Hydraulic Motor Brake System with Counter Balance Valve (카운터 밸런스 밸브를 내장한 유압 모터 브레이크 시스템의 동특성)

  • Yun, So-Nam;Lee, Ill-Yeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.3
    • /
    • pp.214-219
    • /
    • 1993
  • Counter balance valve is used as one part of hydraulic motor brake system. The function of this valve is to protect over-run or free falling of inertia load. But occasionally the brake system with counter balance valve makes some undesirable problems such as pressure surges or vibrations. These problems may hurt system safety and driver's conformability. Nevertheless, studies on dynamic characteristics of hydraulic system including counter balance valve are very rare, so further accumulation of research results are required. In this study, for the purpose of easy estimation about dynamic characteristics of hydraulic system including counter balance valve, precise formulation describing fluid dynamics and valve dynamics under various boundary conditions were made. The equations obtained in the preceding process include some parameters that must be got experimentally. Flow coefficients of valve and choke are the most significant ones among the parameters. So these parameters are obtained experimentally in this study, and experimental equations obtained from the experimental data were used for numerical calculation. The equations were analysed by numerical integration using Runge-Kutta method, because the equations contain various nonlinear terms. From the numerical analysis, it was verified that the dynamic response of counter balance valve and pressure variation at each elements can be estimated very easily. So the analysing method developed in this study enabled very easy estimating the relation between the performances of counter balance valve and various physical parameters related to the valve. Conclusively, it is said that the results obtained in this study can be used very usefully to develop a new type counter balance valve or to apply the valve to actual hydraulic system for various industrial equipments.

  • PDF

Analysis of Lubrication and Dynamic Characteristics of a Cylinder Block for Hydraulic Pump (유압펌프용 실린더 블록의 윤활 및 동특성 해석)

  • 안성용;임윤철;홍예선
    • Tribology and Lubricants
    • /
    • v.20 no.4
    • /
    • pp.209-217
    • /
    • 2004
  • Lubrication characteristics between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump play an important role in volumetric efficiency and durability of pump. In this paper, a finite element method is presented for the computation of the pressure distribution between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump. Also, a Runge-Kutta method is applied to simulate the cylinder block dynamics of three-degrees of freedom motion. From the results of computation, we can draw two major conclusions. One is related to the fluid film characteristics between a cylinder block and a valve plate and the other is related to the average leakage that is determined by the pressure gradient and the clearance near the discharge port. The numerical results of cylinder block dynamics were compared with the experimental results using eddy-current type gap sensors those are fixed at a pump housing.

Control Improvement of Control Loop with Deadband Control Valve (데드밴드 제어밸브를 가진 제어루프의 제어 개선)

  • Lee, Kwang-Dae;Oh, Eung-Se;Yang, Seung-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.318-320
    • /
    • 2006
  • A control valve with deadband characteristics influences on the control dynamics. A control loop with deadband component shows cyclic control results and causes the wears of mechanical parts. A valve on the important process that require nonstop operation cannot be improved during operation. In case of control loops with deadband dynamics, the optimal control parameters based on the performance only are not sure of the good operation in point of protecting the control component. To improve the control performance and control oscillation, the control parameters should be changed to meet both control qualify and protection of control components.

  • PDF

Design of an air-cooled high-pressure 3-stage reciprocating air compressor, applied to the starting of diesel engines (디젤엔진 시동용 공냉식 고압 3단 왕복동 공기압축기의 설계)

  • 이안성;김영철;정영식;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 1998
  • A 150 m$\^$3//hr, 30 kg/cm$\^$2/, air-cooled 3-stage reciprocating air compressor is designed to be used in starting large diesel engines of ships. A basic design procedure is presented to meet the targeted pressure and flow rate, and especially a volumetric efficiency of 80%. Temperature and stress analysis of the 1st stage cylinder are performed using axisymmetric FEM modelings. The dynamics of valve system is analyzed and stress at the 1st stage valve seat caused by valve impact is evaluated. To reduce friction loss and wear at the compressor engine system tribological design issues are reviewed and good design practices are suggested. Finally, forced-air pin-type interstage coolers are designed to dissipate generated compression heat at each stage.

  • PDF

Valve Dynamic Analysis of a High Pressure Reciprocating Compressor (고압 왕복동 압축기의 밸브 거동해석)

  • 이안성;홍용주;정영식;변용수
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.107-111
    • /
    • 2002
  • A complex valve dynamic analysis has been performed with a high Pressure reciprocating gas compressor. Valve dynamic equations, which take into account the flow continuity and cylinder pressure fluctuation, have been derived. Flow coefficients of valves has been analyzed, using CFD models. Results have shown that both of the suction and discharge values behave favorably without any fluttering motions.

  • PDF

Characteristics Analysis of Pilot Operated Pressure Control Valve (파이로트 구동용 압력제어밸브의 특성 해석)

  • 윤소남;최영호;함영복;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.725-728
    • /
    • 2002
  • In this Paper, a mathematical model describing the dynamics of pilot operated pressure control valve was derived. A attempt to analyze the Parameters(seat diameter, cone angle, spring stiffness, control volume) which relate to the performance of the object valve was carried out. Simulation using AMESim as a simulation tool was operated, and verified the validity of our simulation by means of comparison our simulation results with an experimental results of the pilot operated pressure control valve.

  • PDF

Study on Analytic of Opening Angles for Muffler Variable Valve of Automobile (자동차 머플러 내의 가변밸브의 열림 각에 관한 해석적 연구)

  • Park, Chungyeol;Kim, Kwonse;Kim, Jongil;Choi, Dooseuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.190-196
    • /
    • 2014
  • Exhaust system by reinforcement of environment regulation came to the foe study necessity. And Exhaust system has necessary to increase the engine performance and silence. From this cause, Automobile has significantly considered production expense. this study makes process for checking the characteristics about Exhaust variable valve within muffler. Variable valve might reduce the baffle within muffler, It was possible to remove the front muffler. Therefor, To miniaturize a size of muffler might be increased by performance through cost-cutting effect and controling of back pressure. Because the Study on Variable valve installed within muffler, to measure the real data was hardly resulted one of the assignments. From manufactured conduct device, might measure data one of piece which was up-graded of problem. Considering to these point, stressed pressure distribution has analyzed on cross section, floating characteristics about velocity distribution around variable valve using analysis as computational fluid dynamics of Ansys with completed measurement data.