• Title/Summary/Keyword: Valve Disk

Search Result 94, Processing Time 0.028 seconds

3D-inertia Valve Component for Centrifugal Force-based Micro Fluid Control (원심력기반 3차원 관성밸브 모델링을 통한 정밀 미세유체제어)

  • Kang, Dong Hee;Kim, Na Kyong;Kang, Hyun Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.12-17
    • /
    • 2021
  • A three-dimensional slope valve component is used for controlling micro volume of liquid on a centrifugal force-based microfluidic disk platform, also called a lab-on-a-disk. The modeling factor of the slope valve component is determined to centrifugal force for liquid passing the crest of a slope valve via variation of slope length and angle as well as the radius to start point of slope valve. The centrifugal force is calculated by the equilibrium equation of the capillary and gravitational forces according to the microchannel surface roughness and the liquid volume, respectively. As a result, the slope valve is analyzed by the minimum angular velocity for liquid passing at crest point and the ratio between the length of micro liquid and slope length to obtain the factors for optimal slope angle modeling.

Shape Design of Disk Seal in $SF_6$ Gas Safety Valve using Taguchi method (다구찌법을 이용한 $SF_6$가스 안전밸브용 디스크 시일 형상의 설계)

  • Cho Seunghyun;Kim Chungkyun;Kim Younggyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.237-240
    • /
    • 2004
  • Sulfur Hexafluoride, SF6 is widely used for leak detection and as a gaseous dielectric in transformers, condensers and circuit breakers. SF6 gas is also effective as a cleanser in the semiconductor industry. This paper presents a numerical study of the sealing force of disk type seal in SF6 gas safety valve. The sealing force on the disk seal is analyzed by the FEM method based on the Taguch's experimental design technique. Disk seals in SF6 gas safety valve are designed with 9 design models based on 3 different contact length, compressive ratio and gas pressure. The calculated results of Cauchy stress and strain showed that the sealing characteristics of Teflon PTFE is more effective compared to that of FKM(Viton), which is related to the stiffness of the materials. And also, the contact length of the disk seal is important design parameter for sealing the SF6 gas leakage in the safety valve.

  • PDF

Pressure Locking and Thermal Binding Analysis of the RHR Motor Operated Valve (잔열제거계통 모터구동밸브의 압력잠김 및 열고착 현상 분석)

  • Song, Eun-Sil;Kim, Tae-Il;Lee, Kwang-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.630-635
    • /
    • 2001
  • The stem thrust required to unwedging a gate valve is influenced by the pressure and temperature when the valve is closed and by the changes in these conditions between closure and opening. "Pressure Locking" and "Thennal Binding" refer to situations where pressure and temperature effects cause the unwedging load to be much higher than normal. A model of these phenomena has been developed. The effects of pressure and temperature are analyzed to determine the change in this disk-to-seat "interference". Flexibilities or Stiffness of the disk and body strongly influence the unwedging thrust. Calculation and limited comparison to data have been performed for the RHR motor operated valve designs and scenario. Pressure changes can increase the unwedging thrust when bonnet pressure exceeds the pressure in the adjacent piping and temperature changes can increase the unwedging thrust when a temperature change after closure produces an increase in the disk-to-seat interference.

  • PDF

Characteristics of flow for various rotating angle in cylindrical tube (원관내 밸브 디스크 회전각의 변화에 따른 유동특성)

  • Shim Joseph;Huh Hyeung-Suk;Byun Dong Gun;Suh Yong-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.75-78
    • /
    • 2002
  • In this paper, flow on the rear region of a butterfly valve was analysed by using numerical and experimental methods. The butterfly-valve disk angle is changed as 0-60 degree and the uniform flow velocity was fixed In this experiment. It was shown that the numerical results are similar to the experimental results. General discussions are given to the flow-pattern change upon the disk angle of the valve.

  • PDF

Numerical Analysis of Flows in Butterfly Valves to Prevent Cavitation (공동 현상 방지를 위한 버터플라이 밸브의 유동장 해석)

  • Yoon, Joon-yong;Lee, Seng-jun;Kim, Eun-suk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.9-16
    • /
    • 2004
  • A three-dimensional numerical analysis was carried out on incompressible flows in butterfly valves by using commercial FLUENT/UNS code. Characteristics of complex flows including cavitation effect were investigated for different valve disk angles. The butterfly-valves that had different disk angles and different disk shapes were compared with each other in detail. This study focused on the flow analysis in the conventional butterfly valve and the newly designed butterfly valve in order to prevent cavitation. The newly designed valve shows great improvement on performance and endurance.

Numerical Analysis of Incompressible and Compressible Flow Around a Butterfly Valve (버터플라이 벨브 주위의 비압축성 및 압축성유동 특성에 대한 수치해석)

  • 이종욱;이두환;최윤호
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.26-33
    • /
    • 2002
  • In this paper, incompressible and compressible flow characteristics around the butterfly valve have been investigated. In order to simplify the problem, a flat disk valve with various valve disk angles and pressure ratios is considered in the present calculations. It was found that as the disk angle increases, the stagnation point on the front surface of the disk moves to the center of the surface and the inflow velocity decreases. The maximum flow velocity occurs at the downstream of throat because of the formation of vents contracta. As the pressure ratio decreases, compressibility effects increase and the jet formed between the throttle body wall and the disk edge becomes supersonic. This flow also builds up as a shock cell structure. The increase of disk angle and pressure ratio makes the mass flow at the inlet decrease, while the increase of disk angle and the decrease of pressure ratio make the pressure loss coefficient increase.

Evaluation of Design Safety for Butterfly Valve (버터플라이 밸브의 설계 안전도 평가)

  • Lee, Seung-Pyo;Kim, Kwang-Suk;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • Butterfly valve is a kind of rotational valve which opens and closes the flow of fluid on rotating the disk 90 degrees in the valve body. In this paper, butterfly valve design safety evaluation which is based on the international valve specifications is investigated. Both body and disk of the butterfly valve are considered under the normal and pressurized operating conditions. A finite element analysis is carried out to compute the distribution of the displacement, stress and safety factor by using ANSYS. On the basis of calculated design safety we offer the design modification and compare with them.

A Study on the Chattering Phenomena of a Check Valve (역지밸브 채터링 현상 해소방안 연구)

  • 유기완;이준신;김태룡
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 2002
  • The cause and the elimination method for the chattering phenomena were investigated in a check valve attached to the exit of an auxiliary cooling water pump in a Korean nuclear powerplant. From the site experiment and the numerical calculation, the incident angle of the disk was so small that it was not able to produce the sufficient lifting force to overcome the gravitational component of the disk weight. Moreover, it turned out that the installation position was not symmetric for the secondary vortical flow generated inside the elbow so that the flow structure had strongly unstable flow characteristics. From this study, the tapping noise and the chattering phenomena were eliminated exactly by changing the incidence angle of the valve disk and the installation position of the calve body.

A stydy on the chattering noise elimination of the check valve (역지 밸브 채터링 해소방안 연구)

  • Ryu, Ki-Wahn;Lee, Jun-Shin;Kim, Tae-Ryong;Kim, Kyoung-Ku
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1848-1853
    • /
    • 2000
  • Cause and the elimination method for the chattering phenomena were investigated the check valve attached exit of the auxiliary cooling water pump at a korean nuclear powerplant. From the site experiment and numerical calculation the incident angle of the disk was so small that it was not able to produce the lifting force to overcome the component of disk weight. Moreover, it turned out that the installed position was not symmetric for the secondary vortical flow generated inside the elbow, so that the flow structure had strongly unstable flow characteristics. From this technical support, the tapping noise and the chattering phenomena were eliminated exactly by changing the incidence angle of the valve disk and installed position of the check valve.

  • PDF