• Title/Summary/Keyword: Valve Design

Search Result 1,164, Processing Time 0.028 seconds

A Study on the Design and the Dynamic Characteristics of Electro-Hydraulic Flow Control Servo Valve (전자유압 서보 유량제어밸브의 설계 및 동특성 향상에 관한 연구)

  • 김고도;김수태
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2000
  • An experimental and theoretical analysis for the improvement of dynamic characteristics and design of electro-hydraulic flow control servo valve are performed. The theoretical results are compared with the experimental step responses, and the important design parameters of an electro-hydraulic flow control servo valve are derived by using the simulation program. Simulation parameters of nozzle jet coefficient and orifice and spool valve discharge coefficient are given through experiment. The theoretical and experimental step response curves show that the valve gain depends on the fixed orifice and nozzle $ratio(R_on)$ and is maximum at $R_on=1.$ And drain orifice in the flapper - nozzle return line creates a small back pressure, which improves the performance fur the valve.

  • PDF

A Evaluation Method of Operational Performance for Air-operated Gate Valve (공기구동 게이트밸브의 운전 성능평가 방법에 관한 연구)

  • Kim, Dae-Woong;Park, Sung-Keun;Kang, Shin-Cheul;Kim, Yang-Suk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.31-38
    • /
    • 2009
  • The valve performance has been evaluated from the theoretical equation based on design information such as packing thrust, spring preload and friction coefficient(${\mu}$). The accuracy of those data can be lower than that of vendor's initial design data. Especially, the friction coefficient can be degraded with time than the original condition and the valve performance calculated using the previous friction coefficient can not be available. Accordingly, this paper is describing a new performance evaluation method of valve based on diagnostic test data which are acquired from a site valve tested in static and dynamic conditions. Especially, this paper provides a new method using friction coefficient(${\mu}$) which is derived from the diagnostic test data acquired in the valve's design basis condition.

Modelling of Optimum Design of High Vacuum System for Plasma Process

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.159-165
    • /
    • 2021
  • Electronic devices used in the mobile environments fabricated under the plasma conditions in high vacuum system. Especially for the development of advanced electronic devices, high quality plasma as the process conditions are required. For this purpose, the variable conductance throttle valves for controllable plasma employed to the high vacuum system. In this study, we analyzed the effects of throttle valve applications on vacuum characteristics simulated to obtain the optimum design modelling for plasma conditions of high vacuum system. We used commercial simulator of vacuum system, VacSim(multi) on this study. Reliability of simulator verified by simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve schematized as the modelling of throttle valve for the constant process-pressure of below 10-3 torr. Simulation results plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably in plasma process.

Design review of fuel vent-relief valve (연료 벤트/릴리프 밸브의 설계 분석)

  • Jang, JeSun;Kil, GyoungSub;Han, SangYeop;Park, Jong-Ho
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.109-116
    • /
    • 2012
  • A vent-relief valve performs as a safety-valve assembly for liquid propellant feeding system of space launch vehicle, which relives pressurant propellant tanks during the filling and the flight. At vent mode, valve is opened and closed by driving pneumatic pressure, and at relief mode, valve is automatically operated to set relief pressure. In this study, we have analyzed a basic layout of vent-relief valve which is designed using foreign LVs(Saturn) to satisfy requirements of Korean Space Launch Vehicle. The simulation model of vent-relief valve is designed by using the AMESim code to verify design parameters and evaluate pneumatic behaviors of valve. In this study, we performed dynamic characteristic simulations on design parameters. And we could predict opening/closing time and pressures, operating performances on design parameters. Using this results, we could suggest detail design and boundary conditions of design.

Model-based Design and Performance Analysis of Main Control Valve of Flap Control System (플랩제어시스템 주제어밸브의 모델기반 설계 및 성능해석)

  • Cho, Hyunjun;Ahn, Manjin;Joo, Choonshik
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.50-59
    • /
    • 2019
  • The design of the main control valve, which is the main component of the flap control system, was based on actual manufacturing experience on the basis of trial and error method. In this paper, a model-based part design method is proosed. The flap control system consists of a main control valve, fail-safe valve, solenoid valve, LVDT and force motor. The main control valve consists mainly of a spool and slot. The important design parameters of the main control valve are the slot width, overlap and clearance. AMESim is linked to the model and it analyzes the flow path of the main control valve. Applying the proposed design procedure, it was confirmed that the required performance was satisfied within the allowable machining error range.

An Experimental Study on the Effect of Valve Train Design Parameters on the Diesel Engine Valve Rotation (디젤엔진의 밸브회전에 미치는 밸브트레인 설계변수들의 영향에 관한 실험적 연구)

  • Kim, Do-Joong;Jeong, Young-Jong;Lee, Jung-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper we present the effects that valve train design parameters and operating conditions have on the valve rotation properties of a diesel engine. Rotation of intake and exhaust valves are very closely related to the long term durability of diesel engines. of the valves do not rotate even at a rated engine speed, it causes the uneven wear of the valve seat and valve head contact area, which eventually shortens the engine life. Because the rated speed of a diesel engine is relatively lower than that of a gasoline engine, the operating condition of a diesel engine produces tough environment for valve rotation. Therefore, the valve rotation is an important problem which should be solved in the early stage of engine development. In this study, we developed a new technique to measure the valve rotation and shaking motion simultaneously using three proximity sensors. Valve train rotating properties of a diesel engine were measured under various engine operating conditions.

The Review of Design and Installation of the Thermal Relief Valve with It's Surrounding Facility in a Chemical Plant Piping System (배관계에서 열팽창을 고려한 열팽창매출변 및 주변설비의 설계와 설치에 관한 고찰)

  • 차순철;김영배
    • Journal of the Korean Professional Engineers Association
    • /
    • v.30 no.3
    • /
    • pp.104-114
    • /
    • 1997
  • Throughout the practical process engineering design and commissioning 8E startup experiences focused on chemical process safety, the review of design and installation of the thermal relief valve with its surrounding facility in a chemical plant piping system is made to help the better understanding of the piping system of characteristics of thermal relief valve which Is consisting of theoretical approach, correlation in terms of temperature and pressure increase caused by external heat supply in a piping system, consideration of thermal relief valve design, pressure relieving system of serial thermal relief valves and exception of their installation. It is earnestly recommended that following topic should be implemented during thermal relief valve design, installation and normal operation as well.

  • PDF

A Study on Dynamic Characteristics Improvement of Fast Response Proportional Flow Control Valve (고응답 비래 유량제어 밸브의 동특성 향상에 관한 연구)

  • 김고도;김원수;이현철;윤소남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1053-1057
    • /
    • 1996
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of proportional flow control valve with fast response characteristics, and to verify the validity of the design factors In this study, force feedback type flow control valve with nozzle-flapper is studied. And, the influences which fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper effect on dynamic characteristics are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

A Study on Engineering Design IT Installation of Thermal Relief Valve in a Chemical Plant (화학플랜트에서의 릴리프밸브 설계에 관한 고찰)

  • Char, Soon-Chul;Hwang, Soon-Yong;Jang, Seo-Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.4
    • /
    • pp.39-51
    • /
    • 2006
  • Based on the practical process engineering design and commissioning and startup operation experiences focused on chemical process safety, the comprehensive review of engineering design and installation of the thermal relief valve with its surrounding facility in a chemical plant piping system is provided to enhance the better understanding of the piping system of characteristics of thermal relief valve which is comprised of the theoretical approach, correlation in terms of temperature and pressure increase caused by external heat supply in a piping system, consideration of thermal relief valve engineering design, pressure relieving system of serial thermal relief valves and exception of their installation. It is earnestly suggested that following topic should be implemented during thermal relief valve engineering design, installation and normal operation as well.

Optimization of a Gate Valve using Design of Experiments and the Kriging Based Approximation Model (실험계획법과 크리깅 근사모델에 의한 게이트밸브 최적화)

  • Kang, Jung-Ho;Kang, Jin;Park, Young-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.125-131
    • /
    • 2005
  • The purpose of this study is an optimization of gate valve made by forging method instead of welding method. In this study, we propose an optimal shape design to improve the mechanical efficiency of gate valve. In order to optimize more efficiently and reliably, the meta-modeling technique has been developed to solve such a complex problems combined with the DACE (Design and Analysis of Computer Experiments). The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. Also, we prove reliability of the DACE model's application to gate valve by computer simulations using FEM(Finite Element Method).