• 제목/요약/키워드: Validation of User Needs

검색결과 23건 처리시간 0.018초

양방향 순환 신경망 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템 (A Fuzzy-AHP-based Movie Recommendation System with the Bidirectional Recurrent Neural Network Language Model)

  • 오재택;이상용
    • 디지털융복합연구
    • /
    • 제18권12호
    • /
    • pp.525-531
    • /
    • 2020
  • 다양한 정보가 대량으로 유통되는 IT 환경에서 사용자의 요구를 빠르게 파악하여 의사결정을 도와줄 수 있는 추천 시스템이 각광을 받고 있다. 그러나 현재 추천 시스템은 사용자의 취향이나 관심사가 바뀌었을 때 선호도가 즉시 시스템에 반영이 되지 않을 수가 있으며, 광고 유도로 인하여 사용자의 선호도와 무관한 아이템이 추천될 수가 있다는 문제점이 있다. 본 연구에서는 이러한 문제점을 해결하기 위해 양방향 순환 신경망 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템을 제안하였다. 본 시스템은 사용자의 취향이나 관심사를 명확하고 객관적으로 반영하기 위해 Fuzzy-AHP를 적용하였다. 그리고 사용자가 선호하는 영화를 예측하기 위해 양방향 순환 신경망 언어 모델을 이용하여 실시간으로 수집되는 영화 관련 데이터를 분석하였다. 본 시스템의 성능을 평가하기 위해 그리드 서치를 이용하여 전체 단어 집합의 크기에 대한 학습 모델의 적합성을 확인하였다. 그 결과 본 시스템의 학습 모델은 전체 단어 집합의 크기에 따른 평균 교차 검증 지수가 97.9%로 적합하다는 것을 확인할 수 있었다. 그리고 본 모델은 네이버의 영화 평점 대비 평균 제곱근 오차가 0.66, LSTM 언어 모델은 평균 제곱근 오차가 0.805으로, 본 시스템의 영화 평점 예측성이 더 우수함을 알 수 있었다.

연관지식의 효율적인 표현 및 추론이 가능한 지식그래프 기반 지식지도 (Knowledge graph-based knowledge map for efficient expression and inference of associated knowledge)

  • 유기동
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.49-71
    • /
    • 2021
  • 문제해결을 위해 지식을 활용하는 사용자는 내용 면에서 관련된 또 다른 지식, 즉 연관지식에 대한 교차적이고 순차적인 탐색을 진행한다. 지식지도는 관리하는 지식의 현황을 보여주는 도식이자 지식저장소의 분류체계로서, 지식 간 연관성에 기반한 사용자의 지식 탐색을 지원하는 도구이다. 따라서 지식지도는 지식 간 연관성에 의한 네트워크 형식으로 표현되며, 이를 정의 및 추론하는 데에 최적화된 기술을 접목하여 구현되어야 한다. 이를 위해 본 연구는 관리하는 개체와 개체 간 관계를 표현 및 추론하는 데에 최적화된 기능성을 발휘하는 것으로 알려진 그래프DB를 이용하여 지식그래프 기반 지식지도를 개발하는 방법론을 제시한다. 제시된 방법론의 유효성을 확인하기 위하여, 선행 연구의 온톨로지 기반 지식지도 구축 사례 데이터를 그래프DB에 적용하여 지식그래프 기반 지식지도를 구현하고, 구현된 지식 네트워크의 유효성과 Class 자동 구성 능력을 선행 연구의 결과와 비교하는 성능 테스트를 진행한다. 성능 테스트 결과, 본 연구의 지식그래프 기반 지식지도는 선행 연구의 온톨로지 기반 지식지도와 동일한 수준의 성능을 나타냈으며, 지식 및 지식 간 관계 정의 및 추론을 더욱 효율적으로 진행할 수 있음을 확인하였다. 본 연구의 결과는 연관지식에 대한 사용자의 인지과정을 반영한 지식 탐색 기능의 구현에 활용될 수 있으며, 추론에 의한 새로운 연관지식의 발견을 통해 자율적으로 확장되는 지능적 지식베이스의 개발에 응용될 수 있다.

Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구 (A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm)

  • 최지혜;김민승;이찬호;최정환;이정희;성태응
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.131-145
    • /
    • 2020
  • 산업혁신의 흐름에 발맞추어 다양한 분야에서 활용되고 있는 IoT 기술은 빅데이터의 접목을 통한 새로운 비즈니스 모델의 창출 및 사용자 친화적 서비스 제공의 핵심적인 요소로 부각되고 있다. 사물인터넷이 적용된 디바이스에서 누적된 데이터는 사용자 환경 및 패턴 분석을 통해 맞춤형 지능 시스템을 제공해줄 수 있어 편의 기반 스마트 시스템 구축에 다방면으로 활용되고 있다. 최근에는 이를 공공영역 혁신에 확대 적용하여 CCTV를 활용한 교통 범죄 문제 해결 등 스마트시티, 스마트 교통 등에 활용하고 있다. 그러나 이미지 데이터를 활용하는 기존 연구에서는 개인에 대한 사생활 침해 문제 및 비(非)일반적 상황에서 객체 감지 성능이 저하되는 한계가 있다. 본 연구에 활용된 IoT 디바이스 기반의 센서 데이터는 개인에 대한 식별이 불필요해 사생활 이슈로부터 자유로운 데이터로, 불특정 다수를 위한 지능형 공공서비스 구축에 효과적으로 활용될 수 있다. 대다수의 국민들이 일상적으로 활용하는 도시철도에서의 지능형 보행자 트래킹 시스템에 IoT 기반의 적외선 센서 디바이스를 활용하고자 하였으며 센서로부터 측정된 온도 데이터를 실시간 송출하고, CNN-LSTM(Convolutional Neural Network-Long Short Term Memory) 알고리즘을 활용하여 구간 내 보행 인원의 수를 예측하고자 하였다. 실험 결과 MLP(Multi-Layer Perceptron) 및 LSTM(Long Short-Term Memory), RNN-LSTM(Recurrent Neural Network-Long Short Term Memory)에 비해 제안한 CNN-LSTM 하이브리드 모형이 가장 우수한 예측성능을 보임을 확인하였다. 본 논문에서 제안한 디바이스 및 모델을 활용하여 그간 개인정보와 관련된 법적 문제로 인해 서비스 제공이 미흡했던 대중교통 내 실시간 모니터링 및 혼잡도 기반의 위기상황 대응 서비스 등 종합적 메트로 서비스를 제공할 수 있을 것으로 기대된다.