• Title/Summary/Keyword: Validation and Verification Test

Search Result 166, Processing Time 0.025 seconds

A Study on an Evaluation Method for Human/System Interface of Advanced Supervisory Control Systems in Nuclear Power Plant (신형 원자력발전소 감시제어체계의 인간/체계 인터페이스 평가 방법에 관한 연구)

  • Lee, Dong-Ha;Im, Hyeon-Gyo;Jeong, Byeong-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.153-169
    • /
    • 1999
  • The design of nuclear control room is advancing toward totally computer based human system interfaces (HSI). Computer based interfaces offer the opportunity to provide improved support of operator performance, but if not properly deployed, can introduce new challenges. This paper reviews the Westinghouse AP-600 Human Factors Verification and Validation Plan selected for HSI evaluation model of Korea next generation nuclear control rooms. The AP-600 HSI evaluation model addressed 15 evaluation issues considering major activity class of operator and task complexity factors. This paper also describes the test procedures experimenters should follow to evaluate the addressed issues.

  • PDF

Development of Electrical Test Bed for Function Validation of GEO Satellite Electronics Units (정지궤도위성 전장품 성능검증을 위한 전기적 시험장치 개발)

  • Choi, Jae-Dong;Koo, Cheol-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.155-157
    • /
    • 2005
  • The Electrical Test Bed(ETB) integrates the test environment, required for acceptance tests of system level, prior to FM testing. The ETB will be used for the validation of system-level functions and interface between each subsystem. The FTB supports early functional and limited performance checkout of electrical subsystems. Therefore, it provides the environment for the verification of the Flight Software including AOCS, EPS, and TC&R simulators. These ETB will be composed of engineering version of spacecraft BUS, which are laid on the laboratory table.

  • PDF

Contribution of thermal-hydraulic validation tests to the standard design approval of SMART

  • Park, Hyun-Sik;Kwon, Tae-Soon;Moon, Sang-Ki;Cho, Seok;Euh, Dong-Jin;Yi, Sung-Jae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1537-1546
    • /
    • 2017
  • Many thermal-hydraulic tests have been conducted at the Korea Atomic Energy Research Institute for verification of the SMART (System-integrated Modular Advanced ReacTor) design, the standard design approval of which was issued by the Korean regulatory body. In this paper, the contributions of these tests to the standard design approval of SMART are discussed. First, an integral effect test facility named VISTA-ITL (Experimental Verification by Integral Simulation of Transients and Accidents-Integral Test Loop) has been utilized to assess the TASS/SMR-S (Transient and Set-point Simulation/Small and Medium) safety analysis code and confirm its conservatism, to support standard design approval, and to construct a database for the SMART design optimization. In addition, many separate effect tests have been performed. The reactor internal flow test has been conducted using the SCOP (SMART COre flow distribution and Pressure drop test) facility to evaluate the reactor internal flow and pressure distributions. An ECC (Emergency Core Coolant) performance test has been carried out using the SWAT (SMART ECC Water Asymmetric Two-phase choking test) facility to evaluate the safety injection performance and to validate the thermal-hydraulic model used in the safety analysis code. The Freon CHF (Critical Heat Flux) test has been performed using the FTHEL (Freon Thermal Hydraulic Experimental Loop) facility to construct a database from the $5{\times}5$ rod bundle Freon CHF tests and to evaluate the DNBR (Departure from Nucleate Boiling Ratio) model in the safety analysis and core design codes. These test results were used for standard design approval of SMART to verify its design bases, design tools, and analysis methodology.

Development of TREND dynamics code for molten salt reactors

  • Yu, Wen;Ruan, Jian;He, Long;Kendrick, James;Zou, Yang;Xu, Hongjie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.455-465
    • /
    • 2021
  • The Molten Salt Reactor (MSR), one of the six advanced reactor types of the 4th generation nuclear energy systems, has many impressive features including economic advantages, inherent safety and nuclear non-proliferation. This paper introduces a system analysis code named TREND, which is developed and used for the steady and transient simulation of MSRs. The TREND code calculates the distributions of pressure, velocity and temperature of single-phase flows by solving the conservation equations of mass, momentum and energy, along with a fluid state equation. Heat structures coupled with the fluid dynamics model is sufficient to meet the demands of modeling MSR system-level thermal-hydraulics. The core power is based on the point reactor neutron kinetics model calculated by the typical Runge-Kutta method. An incremental PID controller is inserted to adjust the operation behaviors. The verification and validation of the TREND code have been carried out in two aspects: detailed code-to-code comparison with established thermal-hydraulic system codes such as RELAP5, and validation with the experimental data from MSRE and the CIET facility (the University of California, Berkeley's Compact Integral Effects Test facility).The results indicate that TREND can be used in analyzing the transient behaviors of MSRs and will be improved by validating with more experimental results with the support of SINAP.

Verification and Validation of Dynamic Clearance in Digital Mockup Using Engine Movement Roll Data (엔진 거동을 고려한 DMU(Digital Mockup)에서의 다이나믹 간격 검증)

  • Kim, Yong-Suk;Jang, Dong-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.56-61
    • /
    • 2010
  • This paper presents dynamic clearance verification considering engine movement for vehicle engine room package and validates through physical vehicle test. Traditionally, static clearance guide has been used for engine room package, but it's only 2-dimension criteria that results in requiring unnecessary space and it's not possible to conduct engine movement with real driving conditions. Thus, the dynamic DMU considers engine movement based on 28 load cases that are Roll Data analyzed by CAE for maximum engine movement and visualizes part-to-part dynamic clearance into virtual space. The dynamic DMU enables to develop compact engine room package without unnecessary space. The result of comparison between simulation and physical test has 0.892 correlation coefficient.

Considerations for Virtual Vehicle Crash Test (자동차 가상충돌시험을 위한 고려사항)

  • Kyungjin Kim;Jaeho Shin;Kyeonghee Han
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.2
    • /
    • pp.60-66
    • /
    • 2024
  • Computer simulation significantly reduces the high costs associated with actual crash tests and is expanding due to its ability to analyze various test results quantitatively that are difficult to measure in real tests. Research on evaluation technologies is limited according to the finite element analysis, which aims to replace structural verification testing. In this study, considerations for virtual crash tests were derived, and the validity of the zero-energy mode (hourglass mode) was analyzed as part of the considerations for validating the results of vehicle crash simulations. The study reflects on the considerations for virtual crash tests and the variation in hourglass coefficient values affects the occurrence of the hourglass mode. As the hourglass coefficient changes, the maximum hourglass energy reaches over 5% of the maximum internal energy, necessitating a conservative review. A comprehensive study of the maximum hourglass energy is required, considering additional analysis results for various models and collision conditions.

Construction and Validation Test of Turbopump Real-propellant Test Facility (터보펌프 실매질 시험설비 구축 및 인증시험)

  • Kim, Jin-Sun;Han, Yeoung-Min;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.85-93
    • /
    • 2015
  • Liquid rocket engines of KSLV-II employ a turbopump feed system for propellants. A turbopump real-propellant test facility based on liquid oxygen and kerosene has been constructed for the experimental verification of the turbopump performance using the real media of propellants(i.e., LOX/Kerosene). The verification tests of sub-systems were performed such as LOX/kerosene feed system and alcohol burner system. Finally, the performance of the whole system was executed and verified through a sets of validation tests with the development model of the KSLV-II turbopumps. It has been confirmed that the test facility satisfies the operating conditions and time of the turbopump at the design and off-design performance test using real-propellant.

Railway Software Analysis Tool using Symbolic Execution Method (심볼릭 수행 방법을 이용한 철도 소프트웨어 코드분석 도구제안)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Shin, Duck-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.242-249
    • /
    • 2016
  • The railway system is being converted to the computer system from the existing mechanical device, and the dependency on software is being increased rapidly. Though the size and degree of complexity of software for railway system are slower than the development speed of hardware, it is expected that the size will be grown bigger gradually and the degree of complexity will be increased also. Accordingly, the validation of reliability and safety of embedded software for railway system was started to become influential as the important issue. Accordingly, various software test and validation activities are highly recommended in the international standards related railway software. In this paper, we presented a software coding analysis tool using symbolic execution for railway system, and presented its result of implementation.

Uncertainty Analysis and Improvement of an Altitude TestFacility for Small Jet Engines

  • Jun, Yong-Min;Yang, In-Young;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.46-56
    • /
    • 2004
  • The verification and improvement of the measurement uncertainty have beenperformed in the altitude test facility for small gas turbine engines, which was built atthe Korea Aerospace Research Institute (KARI) in October 1999. This test is performedwith a single spool turbojet engine at several flight conditions. This paper discussesthe evaluation and validation process for the measurement uncertainty improvements usedin the altitude test facility. The evaluation process, defined as tests before the facilitymodification, shows that the major contnbutors to the measurement uncertainty are theflow meter discharge coefficient, the inlet static and total pressures, the cell pressureand the fuel flow rate. The measurement uncertainty is focused on the primary parametersof the engine performance such as airflow rate, thrust and specific fuel consumption (SFC).The validation process, defined as tests after the facility modification, shows that themeasurement uncertainty, in seal level condition, is tmproved to the acceptable level throughthe facility modification. In altitude test conditions, the measurement uncertainties arenot improved as much as the uncertainty in sea level condition.

Testbench Implementation for FPGA based Nuclear Safety Class System using OVM

  • Heo, Hyung-Suk;Oh, Seungrohk;Kim, Kyuchull
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.566-571
    • /
    • 2014
  • A safety class field programmable gate array based system in nuclear power plant has been developed to improve the diversity. Testbench is necessary to satisfy the technical reference, IEC-62566, for verification and validation of register transfer level code. We use the open verification methodology(OVM) developed by standard body. We show that our testbench can use random input for test. And also we show that reusability of block level testbench for the integration level testbench, which is very efficient for large scale system like nuclear reactor protection system.