• Title/Summary/Keyword: Valence-Arousal model

Search Result 29, Processing Time 0.024 seconds

Multimodal Emotional State Estimation Model for Implementation of Intelligent Exhibition Services (지능형 전시 서비스 구현을 위한 멀티모달 감정 상태 추정 모형)

  • Lee, Kichun;Choi, So Yun;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Both researchers and practitioners are showing an increased interested in interactive exhibition services. Interactive exhibition services are designed to directly respond to visitor responses in real time, so as to fully engage visitors' interest and enhance their satisfaction. In order to install an effective interactive exhibition service, it is essential to adopt intelligent technologies that enable accurate estimation of a visitor's emotional state from responses to exhibited stimulus. Studies undertaken so far have attempted to estimate the human emotional state, most of them doing so by gauging either facial expressions or audio responses. However, the most recent research suggests that, a multimodal approach that uses people's multiple responses simultaneously may lead to better estimation. Given this context, we propose a new multimodal emotional state estimation model that uses various responses including facial expressions, gestures, and movements measured by the Microsoft Kinect Sensor. In order to effectively handle a large amount of sensory data, we propose to use stratified sampling-based MRA (multiple regression analysis) as our estimation method. To validate the usefulness of the proposed model, we collected 602,599 responses and emotional state data with 274 variables from 15 people. When we applied our model to the data set, we found that our model estimated the levels of valence and arousal in the 10~15% error range. Since our proposed model is simple and stable, we expect that it will be applied not only in intelligent exhibition services, but also in other areas such as e-learning and personalized advertising.

Multidimensional Affective model-based Multimodal Complex Emotion Recognition System using Image, Voice and Brainwave (다차원 정서모델 기반 영상, 음성, 뇌파를 이용한 멀티모달 복합 감정인식 시스템)

  • Oh, Byung-Hun;Hong, Kwang-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.821-823
    • /
    • 2016
  • 본 논문은 다차원 정서모델 기반 영상, 음성, 뇌파를 이용한 멀티모달 복합 감정인식 시스템을 제안한다. 사용자의 얼굴 영상, 목소리 및 뇌파를 기반으로 각각 추출된 특징을 심리학 및 인지과학 분야에서 인간의 감정을 구성하는 정서적 감응요소로 알려진 다차원 정서모델(Arousal, Valence, Dominance)에 대한 명시적 감응 정도 데이터로 대응하여 스코어링(Scoring)을 수행한다. 이후, 스코어링을 통해 나온 결과 값을 이용하여 다차원으로 구성되는 3차원 감정 모델에 매핑하여 인간의 감정(단일감정, 복합감정)뿐만 아니라 감정의 세기까지 인식한다.

Emotion Recognition using Short-Term Multi-Physiological Signals

  • Kang, Tae-Koo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.1076-1094
    • /
    • 2022
  • Technology for emotion recognition is an essential part of human personality analysis. To define human personality characteristics, the existing method used the survey method. However, there are many cases where communication cannot make without considering emotions. Hence, emotional recognition technology is an essential element for communication but has also been adopted in many other fields. A person's emotions are revealed in various ways, typically including facial, speech, and biometric responses. Therefore, various methods can recognize emotions, e.g., images, voice signals, and physiological signals. Physiological signals are measured with biological sensors and analyzed to identify emotions. This study employed two sensor types. First, the existing method, the binary arousal-valence method, was subdivided into four levels to classify emotions in more detail. Then, based on the current techniques classified as High/Low, the model was further subdivided into multi-levels. Finally, signal characteristics were extracted using a 1-D Convolution Neural Network (CNN) and classified sixteen feelings. Although CNN was used to learn images in 2D, sensor data in 1D was used as the input in this paper. Finally, the proposed emotional recognition system was evaluated by measuring actual sensors.

A Music Retrieval Scheme based on Fuzzy Inference on Musical Mood and Emotion (음악 무드와 감정의 퍼지 추론을 기반한 음악 검색 기법)

  • Jun, Sang-Hoon;Rho, Seung-Min;Hwang, Een-Jun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.51-53
    • /
    • 2008
  • 최근 오디오 압축 기술의 발전에 힘입은 디지털 음원과 웹 스트리밍의 보급으로, 사용자가 음악 정보에 손쉽게 접할 수 있게 되었다. 이에 따라 음악을 보다 쉽고 효율적인 방법으로 검색하는 방법뿐 아니라 사용자의 환경에 따라 적절한 음악을 검색할 수 있는 기능의 필요성이 증가하게 되었다. 본 논문에서는 음악의 특징에 따라 분류된 데이터베이스를 사용하고, 사용자의 감정을 분석하여 적절한 음악을 검색하는 시스템을 제안한다. 본 시스템은 사용자의 감정 입력을 효율적으로 처리하기 위한 방법으로 Thayer의 2D emotional space를 적용하여 Valence-Arousal model의 두 가지의 입력을 처리한다. 가장 적합한 음악의 정보를 얻기 위해 사용된 Fuzzy Inference System의 IF-THEN 규칙을 정의하기 위하여 언어적으로 정의된 기존의 음악 감정 연구 결과를 적용하였고, 도출된 결과와 가장 유사도가 깊은 음악을 우선적으로 검색하도록 설계하였다. 이와 같이 구현된 시스템의 타당성을 검증하기 위해 사용자 설문조사를 수행하였다.

Audio and Video Bimodal Emotion Recognition in Social Networks Based on Improved AlexNet Network and Attention Mechanism

  • Liu, Min;Tang, Jun
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.754-771
    • /
    • 2021
  • In the task of continuous dimension emotion recognition, the parts that highlight the emotional expression are not the same in each mode, and the influences of different modes on the emotional state is also different. Therefore, this paper studies the fusion of the two most important modes in emotional recognition (voice and visual expression), and proposes a two-mode dual-modal emotion recognition method combined with the attention mechanism of the improved AlexNet network. After a simple preprocessing of the audio signal and the video signal, respectively, the first step is to use the prior knowledge to realize the extraction of audio characteristics. Then, facial expression features are extracted by the improved AlexNet network. Finally, the multimodal attention mechanism is used to fuse facial expression features and audio features, and the improved loss function is used to optimize the modal missing problem, so as to improve the robustness of the model and the performance of emotion recognition. The experimental results show that the concordance coefficient of the proposed model in the two dimensions of arousal and valence (concordance correlation coefficient) were 0.729 and 0.718, respectively, which are superior to several comparative algorithms.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.

On the Predictive Model for Emotion Intensity Improving the Efficacy of Emotionally Supportive Chat (챗봇의 효과적 정서적 지지를 위한 한국어 대화 감정 강도 예측 모델 개발)

  • Sae-Lim Jeong;You-Jin Roh;Eun-Seok Oh;A-Yeon Kim;Hye-Jin Hong;Jee Hang Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.656-659
    • /
    • 2023
  • 정서적 지원 대화를 위한 챗봇 개발 시, 사용자의 챗봇에 대한 사용성 및 대화 적절성을 높이기 위해서는 사용자 감정에 적합한 지원 콘텐츠를 제공하는 것이 중요하다. 이를 위해, 본 논문은 사용자 입력 텍스트의 감정 강도 예측 모델을 제안하고, 사용자 발화 맞춤형 정서적 지원 대화에 적용하고자 한다. 먼저 입력된 한국어 문장에서 키워드를 추출한 뒤, 이를 각성도 (arousal)과 긍정부 정도(valence) 공간에 투영하여 키워드가 내포하는 각성도-긍정부정도에 가장 근접한 감정을 예측하였다. 뿐만 아니라, 입력된 전체 문장에 대한 감정 강도를 추가로 예측하여, 핵심 감정 강도 - 문맥상 감정강도를 모두 추출하였다. 이러한 통섭적 감정 강도 지수들은 사용자 감정에 따른 최적 지원 전략 선택 및 최적 대화 콘텐츠 생성에 공헌할 것으로 기대한다.

Comparison Between Core Affect Dimensional Structures of Different Ages using Representational Similarity Analysis (표상 유사성 분석을 이용한 연령별 얼굴 정서 차원 비교)

  • Jongwan Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.33-42
    • /
    • 2023
  • Previous emotion studies employing facial expressions have focused on the differences between age groups for each of the emotion categories. Instead, Kim (2021) has compared representations of facial expressions in the lower-dimensional emotion space. However, he reported descriptive comparisons without statistical significance testing. This research used representational similarity analysis (Kriegeskorte et al., 2008) to directly compare empirical datasets from young, middle-aged, and old groups and conceptual models. In addition, individual differences multidimensional scaling (Carroll & Chang, 1970) was conducted to explore individual weights on the emotional dimensions for each age group. The results revealed that the old group was the least similar to the other age groups in the empirical datasets and the valence model. In addition, the arousal dimension was the least weighted for the old group compared to the other groups. This study directly tested the differences between the three age groups in terms of empirical datasets, conceptual models, and weights on the emotion dimensions.

An analysis of emotional English utterances using the prosodic distance between emotional and neutral utterances (영어 감정발화와 중립발화 간의 운율거리를 이용한 감정발화 분석)

  • Yi, So-Pae
    • Phonetics and Speech Sciences
    • /
    • v.12 no.3
    • /
    • pp.25-32
    • /
    • 2020
  • An analysis of emotional English utterances with 7 emotions (calm, happy, sad, angry, fearful, disgust, surprised) was conducted using the measurement of prosodic distance between 672 emotional and 48 neutral utterances. Applying the technique proposed in the automatic evaluation model of English pronunciation to the present study on emotional utterances, Euclidean distance measurement of 3 prosodic elements such as F0, intensity and duration extracted from emotional and neutral utterances was utilized. This paper, furthermore, extended the analytical methods to include Euclidean distance normalization, z-score and z-score normalization resulting in 4 groups of measurement schemes (sqrF0, sqrINT, sqrDUR; norsqrF0, norsqrINT, norsqrDUR; sqrzF0, sqrzINT, sqrzDUR; norsqrzF0, norsqrzINT, norsqrzDUR). All of the results from perceptual analysis and acoustical analysis of emotional utteances consistently indicated the greater effectiveness of norsqrF0, norsqrINT and norsqrDUR, among 4 groups of measurement schemes, which normalized the Euclidean measurement. The greatest acoustical change of prosodic information influenced by emotion was shown in the values of F0 followed by duration and intensity in descending order according to the effect size based on the estimation of distance between emotional utterances and neutral counterparts. Tukey Post Hoc test revealed 4 homogeneous subsets (calm