• 제목/요약/키워드: Vacuum ultraviolet

검색결과 213건 처리시간 0.029초

감압대기 및 불활성가스 분위기에서 적합한 정전기 제거장치의 개발 (Development of the Most Optimized Ionizer for Reduction in the Atmospheric Pressure and Inert Gas Area)

  • 이동훈;정필훈;이수환;김상효
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.42-46
    • /
    • 2016
  • In LCD Display or semiconductor manufacturing processes, the anti-static technology of glass substrates and wafers becomes one of the most difficult issues which influence the yield of the semiconductor manufacturing. In order to overcome the problems of wafer surface contamination various issues such as ionization in decompressed vacuum and inactive gas(i.e. $N_2$ gas, Ar gas, etc.) environment should be considered. Soft X ray radiation is adequate in air and $O_2$ gas at atmospheric pressure while UV radiation is effective in $N_2$ gas Ar gas and at reduced pressure. At this point of view, the "vacuum ultraviolet ray ionization" is one of the most suitable methods for static elimination. The vacuum ultraviolet can be categorized according to a short wavelength whose value is from 100nm to 200nm. this is also called as an Extreme Ultraviolet. Most of these vacuum ultraviolet is absorbed in various substances including the air in the atmosphere. It is absorbed substances become to transit or expose the electrons, then the ionization is initially activated. In this study, static eliminator based on the vacuum ultraviolet ray under the above mentioned environment was tested and the results show how the ionization performance based on vacuum ultraviolet ray can be optimized. These vacuum ultraviolet ray performs better in extreme atmosphere than an ordinary atmospheric environment. Neutralization capability, therefore, shows its maximum value at $10^{-1}{\sim}10^{-3}$ Torr pressure level, and than starts degrading as pressure is gradually reduced. Neutralization capability at this peak point is higher than that at reduced pressure about $10^4$ times on the atmospheric pressure and by about $10^3$ times on the inactive gas. The introductions of these technology make it possible to perfectly overcome problems caused by static electricity and to manufacture ULSI devices and LCD with high reliability.

광학부품의 진공자외선특성 측정용 분광반사율계 제작 (Fabrication of reflectometer for vacuum ultraviolet spectral characteristic measurements of optical component)

  • 신동주;김현종;이인원
    • 한국광학회지
    • /
    • 제15권4호
    • /
    • pp.325-330
    • /
    • 2004
  • 진공자외선 파장영역에서 광학부품의 분광특성을 측정할 수 있는 중수소광원과 진공단색화장치, 시료챔버 및 광 검출기 구조의 진공자외선 분광반사율계를 제작하였다. 제작된 진공자외선 분광반사율계는 115nm∼330 nm의 분광영역에서 약 3.0${\times}$$10^{-4}$ Pa의 기압에서 작동하였다. 253.652 nm와 184.95 nm의 수은 선스펙트럼으로 진공단색화장치의 파장을 교정하여 그 분해능이 0.012 nm이고, 파장정확도가 $\pm$0.03 nm 임을 확인하였다. 중수소 광원을 이용하여 115 nm∼230 nm 파장대역의 진공자외선 영역에서 여러 가지 광학부품들에 이용되고 있는 재료(MgF$_2$, CaF$_2$, BaF$_2$, SiO$_2$, Sapphire)들의 분광투과율과 반사율을 측정하였다.

분무열분해 공정에 의해 합성된 유로피움이 도핑된 YBO3 형광체의 진공자외선 하에서의 발광 특성 (Photoluminescence Characteristics of Eu-doped YBO3 Phosphor Prepared by Spray Pyrolysis under Vacuum Ultraviolet)

  • 구혜영;강윤찬
    • 한국재료학회지
    • /
    • 제16권8호
    • /
    • pp.485-489
    • /
    • 2006
  • The preparation conditions of $YBO_3$:Eu phosphor particles having the maximum photoluminescence intensity under vacuum ultraviolet in the spray pyrolysis were optimized. The $YBO_3$:Eu phosphor particles prepared from spray solution with stoichiometric amount of boric acid had the maximum photoluminescence intensity. The $YBO_3$:Eu phosphor particles with pure phases were formed at low post-treatment temperatures because of fast reaction of yttrium and boron components without volatilization of boron component. The prepared $YBO_3$:Eu phosphor particles by spray pyrolysis had fine size, narrow size distribution and regular morphology. The photoluminescence intensity of the prepared $YBO_3$:Eu phosphor particles under vacuum ultraviolet was 103% of the commercial $(Y,Gd)BO_3$:Eu phosphor particles.

Ultraviolet-emissive BaSiO3:Ce3+ Phosphor for VUV Excimer Lamp

  • Lee, Jugyeong;Afandi, Mohammad M.;Kim, Jongsu;Heo, Hoon
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.1-5
    • /
    • 2021
  • Ultraviolet (UVA)-emissive BaSiO3:Ce3+ phosphor was astonishingly reproducible by vacuum-sintering at a high temperature through a simple solid-state reaction method. It was conveniently formed in BaSiO3 phases. The compound showed the UVA emission and the UV-VUV excitation due to 5d-4f transitions from Ce3+ ions: emission peak at 380 nm with a 56 nm width. Its temperature dependence and vacuum UV excitability were examined for practical application as an excimer discharge lamp, which showed the high thermal stability (80% at 100℃) and the strong VUV excitations at 145 nm and 172 nm.