• Title/Summary/Keyword: Vacuum pump

Search Result 362, Processing Time 0.026 seconds

Development of Turbo Molecular Pump Vacuum Facility for High Altitude Space Environment Test (고고도 우주환경모사용 터보분자펌프 진공설비 구축)

  • Huh, Hwan-Il;Kim, Min-Jae;Kim, Sung-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.827-829
    • /
    • 2011
  • Vacuum facility is required for high altitude space environment test to develop satellites or space launch vehicles. We, at Chungnam, National University, developed turbo molecular pump vacuum test facility up to $1.0{\times}10-6$ torr to simulate 200 km altitude environment. In this paper, we present some preliminary vacuum performance test results.

  • PDF

Effect of Drag Stages Surface Roughness on the Compression Ratio of a TMDP

  • Bianco, Alessandra Dal;Bonmassar, Luca
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.120-123
    • /
    • 2016
  • The rotor of a turbomolecular drag pump is generally made of an aluminum alloy. Its surface finish is affected by various processes that the rotor itself undergoes during the manufacturing phase. The impact of different surface finishes on the pumping performances of a turbomolecular pump has been mainly investigated by Sawada et al [1]. The present work aims to broaden the previous bibliographic study to the drag stages of a turbomolecular pump by testing the impact of different surface finishes on the compression ratio of the pump. Experimental tests have been made focusing on two processes: the corundum sandblasting and the glass microspheres shot-peening. Both the processes flatten and/or physically remove EDM melted spheres; in particular, blasted surfaces obtained by glass shot-peening are generally smoother than surfaces obtained by corundum sandblasting. In order to characterize the surface texture left by such processes, preliminary surface roughness measurements have been made on the drag rotor disks of several pumps. The experimental tests conducted on both sandblasted and shot-peened rotors confirms previous results obtained on the turbo stages by Sawada et al. [1], showing that the average roughness of the surface has an impact on the compression ratio of the pump; in particular, an increment in the surface roughness causes a corresponding increment in the compression ratio of the pump and vice versa. For the tested pumps, the higher surface roughness gives a factor of increment of about 2 on the measured hydrogen maximum compression ratio of the pump.

Study on the Silicon Pump and Control System for TFT-LCD Manufacturing Process (TFT-LCD 생산공정을 위한 실리콘 펌프 및 제어시스템에 관한 연구)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3618-3622
    • /
    • 2012
  • In this study, the yield of the modules in LCD production lines, improving current TFT-LCD production process is essential for high-pressure silicone injection equipment, and precision control system was developed. This full-scale production of the future through the development of next-generation display production line is being prepared, being transferred to China in LCD production facilities can make the most of efficient equipment. Therefore, minimize the cost of new investment and help create the maximum effect to control the detailed behavior of the sequence H/W and S/W system was installed on the production line. In addition, Fast-evacuating the structure proposed for the Vacuum pump, Pump control circuit design and experimental results has been completed.

Analytical Study on Inner Flow and Structural Stiffness in Vane Type of Vacuum Pump (베인형 진공펌프의 내부유동과 구조 강성에 관한 해석적 연구)

  • Son, Taekwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.201-206
    • /
    • 2017
  • In the study, the inner flow characteristics were analyzed by modifying the inner design parameter of the vane-type vacuum pump. The effect of pressure generated by the inner flow of pump on the rotor and vane was analyzed. The design parameter was analyzed using the angle variation of tilting and rotation of the vane. MRF was used for the analysis conducted using a virtual condition where the rotor and vane are rotated. The pressure gained from the load of the rotor and vane in the flow analysis is used for the structure analysis. Based on the results, the effect of variable vane design was revealed in structural strength. The effect of centrifugal and friction force generated during pump operation on structural strength was also analyzed.

Large Cryosorption Pump for the NBI Test Stand

  • In, S.R.;Shim, H.J.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.2
    • /
    • pp.27-32
    • /
    • 2003
  • A large cryo-pumping system composed of 4 cryosorption pumps was designed and manufactured to satisfy the pressure requirements of the NBI test stand. The cryosorption pump consists of a thermal shield/baffle assembly and a cryopanel coated with activated carbon granules. The thermal shield is cooled by liquid nitrogen, and the cryopanel by a commercial helium refrigerator. The operation characteristics and vacuum performance of the cryosorption pump were investigated. The cooling down time of the cryopanel to 20 K was about 6 hours with a liquid nitrogen consumption rate of about 35 L/hr. The maximum pumping speed of the cryosorption pump for the hydrogen gas measured by the steady pressure method was about 90,000 L/s.

  • PDF

Study of Knudsen Pump using Vacuum Chamber and It's Upgrade Plan to Thermal Vacuum Chamber (고고도 우주환경 모사용 진공챔버를 이용한 누센펌프의 연구와 열진공챔버로의 개선 방향)

  • Kim, Hye-Hwan;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.361-364
    • /
    • 2009
  • Vacuum facility is required for high altitude space environment test to develop small thruster to be applied for micro-satellite. After selecting vacuum equipment and integrating the chamber to simulate 100-120km attitude with max, $10^{-5}\;torr$. We tested the performance of high vacuum chamber. We designed, fabricated the knudsen pump and analyzed pressure gradient efficiency of membrane according to Knudsen number under vacuum conditions. We described the upgrade plan to a thermal vacuum chamber.

  • PDF

Numerical Analysis of Flow Fields for Optimum Design of Vehicle Vacuum Pump with Multivanes (자동차용 진공펌프 멀티 베인의 최적 설계를 위한 유동장 수치해석)

  • Lim, Tae-Eun;Lee, Kye-Bock
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.883-890
    • /
    • 2011
  • A numerical study was conducted to determine the optimal design for a vehicle vacuum pump. The degree of vacuum was examined for different design factors such as the angle of vanes, number of vanes, angle and position of the pump inlet-outlet pipe, and angular rotational speed of vanes. The results show that there is a little difference in the degree of vacuum when the angle of vanes are changed, but an angular change in the outlet pipe reduces the pump loss. As the rotational speed is increased, the mass flow rate increases, but a high rotational speed does not result in the maximum degree of vacuum. In addition, when the number of vanes is increased, the scattering range of mass flow rate decreases and pressure drop is abated.

Predictive Diagnosis and Preventive Maintenance Technologies for Dry Vacuum Pumps (건식 진공펌프의 상태진단 및 예지보수 기법)

  • Cheung, Wan-Sup
    • Vacuum Magazine
    • /
    • v.2 no.1
    • /
    • pp.31-34
    • /
    • 2015
  • This article introduces fundamentals of self-diagnosis and predictive (or preventive) maintenance technologies for dry vacuum pumps. The state variables of dry pumps are addressed, such as the pump and motor body temperatures, consumption currents of main and booster pumps, mechanical vibration, and exhaust pressure, etc. The adaptive parametric models of the state variables of the dry pump are exploited to provide dramatic reduction of data size and computation time for self-diagnosis. Two indicators, the Hotelling's $T^2$ and the sum of squares residuals (Q), are illustrated to be quite effective and successful in diagnosing dry pumps used in the semiconductor processes.