• Title/Summary/Keyword: Vacuum precooling system

Search Result 2, Processing Time 0.02 seconds

A study on the characteristic of vegetables temperature in the pre-cooling vacuum unit (진공 예냉장치 내에서의 야채류의 온도 변화 특성에 관한 연구)

  • Won, Jong-Ho;Park, Sang-Gyun;Yoon, Seok-Hoon;Oh, Cheol
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.879-884
    • /
    • 2007
  • This study is to observe the change of temperature and relative humidity for various vegetables in vacuum precooling system. The materials for experiments were the lettuce, chinese cabbage, pak choi and cabbage. The experimental apparatus was constructed of vacuum chamber, vapor/water separator, water tank, pumps ejecting and cooling water circulation, refrigerator unit, cooling coil for water cooling, Hygrometer and Data logger measuring of the temperature change. The experiments were operated in 20torr and recorded every 3 minutes. It was found that the cooling temperature and speed of vegetables are depending on the percentage of its water content. The more water contains, the faster cooling speed and the lower cooling temperature.

Design of closed-loop nitrogen Joule-Thomson refrigeration cycle for 67 K with sub-atmospheric device

  • Lee, C.;Lee, J.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Closed-loop J-T (Joule-Thomson) refrigeration cycle is advantageous compared to common open loop $N_2$ decompression system in terms of nitrogen consumption. In this study, two closed-loop pure $N_2$ J-T refrigeration systems with sub-atmospheric device for cooling High Temperature Superconductor (HTS) power cable are investigated. J-T cooling systems include 2-stage compressor, 2-stage precooling cycle, J-T valve and a cold compressor or an auxiliary vacuum pump at the room temperature. The cold compressor and the vacuum pump are installed after the J-T valve to create sub-atmospheric condition. The temperature of 67 K is possible by lowering the pressure up to 24 kPa at the cold part. The optimized hydrocarbon mixed refrigerant (MR) J-T system is applied for precooling stage. The cold head of precooling MR J-T have the temperature from 120 K to 150 K. The various characteristics of cold compressor are invstigated and applied to design parameter of the cold compressor. The Carnot efficiency of cold compressor system is calculated as 16.7% and that of vacuum pump system as 16.4%. The efficiency difference between the cold compressor system and the vacuum pump system is due to difference of enthalpy change at cryogenic temperature, enthalpy change at room temperature and different work load at the pre-cooling cycle. The efficiency of neon-nitrogen MR J-T system is also presented for comparison with the sub-atmospheric devices. These systems have several pros and cons in comparison to typical MR J-T systems such as vacuum line maintainability, system's COP and etc. In this paper, the detailed design of the subcooled $N_2$ J-T systems are examined and some practical issues of the sub-atmospheric devices are discussed.