• Title/Summary/Keyword: Vacuum melting

Search Result 185, Processing Time 0.023 seconds

Thermal Stability Enhanced Ge/graphene Core/shell Nanowires

  • Lee, Jae-Hyeon;Choe, Sun-Hyeong;Jang, Ya-Mu-Jin;Kim, Tae-Geun;Kim, Dae-Won;Kim, Min-Seok;Hwang, Dong-Hun;Najam, Faraz;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.376-376
    • /
    • 2012
  • Semiconductor nanowires (NWs) are future building block for nano-scale devices. Especially, Ge NWs are fascinated material due to the high electrical conductivity with high carrier mobility. It is strong candidate material for post-CMOS technology. However, thermal stability of Ge NWs are poor than conventional semiconductor material such as Si. Especially, when it reduced size as small as nano-scale it will be melted around CMOS process temperature due to the melting point depression. Recently, Graphene have been intensively interested since it has high carrier mobility with single atomic thickness. In addition, it is chemically very stable due to the $sp^2$ hybridization. Graphene films shows good protecting layer for oxidation resistance and corrosion resistance of metal surface using its chemical properties. Recently, we successfully demonstrated CVD growth of monolayer graphene using Ge catalyst. Using our growth method, we synthesized Ge/graphene core/shell (Ge@G) NW and conducted it for highly thermal stability required devices. We confirm the existence of graphene shell and morphology of NWs using SEM, TEM and Raman spectra. SEM and TEM images clearly show very thin graphene shell. We annealed NWs in vacuum at high temperature. Our results indicated that surface melting phenomena of Ge NWs due to the high surface energy from curvature of NWs start around $550^{\circ}C$ which is $270^{\circ}C$ lower than bulk melting point. When we increases annealing temperature, tip of Ge NWs start to make sphere shape in order to reduce its surface energy. On the contrary, Ge@G NWs prevent surface melting of Ge NWs and no Ge spheres generated. Furthermore, we fabricated filed emission devices using pure Ge NWs and Ge@G NWs. Compare with pure Ge NWs, graphene protected Ge NWs show enhancement of reliability. This growth approach serves a thermal stability enhancement of semiconductor NWs.

  • PDF

An Apparatus for Containerless Melting and Solidification of Materials Via Electrostatic Levitation (정전기 부유 무용기 용해 및 응고 장비)

  • Sung, Y.S.;Kim, M.H.
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.439-444
    • /
    • 2006
  • An apparatus capable of melting and solidifying various materials containerlessly in high vacuum via electrostatic levitation (ESL) has been developed for finding materials with new or improved properties and further building a database for processing materials in microgravity. Containerless solidification of semiconductors, metals, and alloys such as Si, Zr, Nb, Mo, $V_3Si$, and boron carbides has been carried out to test how various materials at how high temperatures can be processed by ESL. The materials in levitation became spherical at melting by their own surface tensions which were ideal for measuring intrinsic thermophysical properties of materials in the liquid state. Multiple cycles of melting and cooling were reproducibly repeated and radiative cooling curves were recorded.

Deformation Behavior & Rolling Effect on the Hot Rolling of High Nitrogen Stainless Steel (고질소강의 열간압연시 변형거동 및 압연효과)

  • Kim, Y.D.;Kim, D.K.;Lee, J.W.;Bae, W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.329-332
    • /
    • 2008
  • Nowadays, It is required human body-friendly, good mechanical properties, and economical efficiency material, simultaneously. The material to meet above requirement condition rear up high nitrogen stainless steel(HNS). However, HNS have a lot of problem such as poor workability, hot crack sensitivity. So, It is needed the condition of plastic working to overcome above many problem. In this study, VIM ingot with 100kg was made by pressurized vacuum induction melting. And then, The slab perform for hot rolling was prepared by open-die forging. Hot rolling process was performed by computer simulation according to change of height reduction, rolling temperature, heating numbers, rolling pass and so forth. The results of analysis were investigated between analysis and lab-scale rolling product.

  • PDF

Recyling and refining of molybdenum scraps by vacuum arc melting (진공(眞空) 아크 용해(溶解)에 의한 몰리브덴 스크랩의 재활용(再活用) 및 정련(精鍊))

  • Lee, Back-Kyu;Oh, Jung-Min;Lee, Seoung-Won;Kim, Sang-Bae;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.20 no.5
    • /
    • pp.40-45
    • /
    • 2011
  • We carried out to investigate the refining effect of molybdenum by Ar-H$_2$ vacuum arc melting(VAM) process for recycling Mo scrap. The purity of the Mo metals refined by VAM was evaluated using glow discharge mass spectromety(GDMS). From the result of GDMS, most impurities in the Mo metals except for W were removed by Ar-H$_2$ VAM down to a few mass ppm levels. The purity of the refined molybdenum scrap was improved up to 4N5(99.995%) from 3N(99.95%) of the initial Mo scrap. The amount of gaseous impurities such as C, N, and O in Mo scrap were decreased from 1290 ppm to 132 ppm. As a result, it is considered that a possibility of refining and cost-effective method for recycling Mo scrap by Ar-H$_2$ vacuum arc melting process was confirmed in this study.

Diffusion of the High Melting Temperature Element from the Molten Oxides for Copper Alloys (구리 합금을 위한 초고융점 원소의 용융산화물 확산 공정)

  • Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.130-135
    • /
    • 2016
  • To alloy high melting point elements such as boron, ruthenium, and iridium with copper, heat treatment was performed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ at the temperature of $1200^{\circ}C$ in vacuum for 30 minutes. The microstructure analysis of the alloyed sample was confirmed using an optical microscope and FE-SEM. Hardness and trace element analyses were performed using Vickers hardness and WD-XRF, respectively. Diffusion profile analysis was performed using D-SIMS. From the microstructure analysis results, crystal grains were found to have formed with sizes of 2.97 mm. For the copper alloys formed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ the sizes of the crystal grains were 1.24, 1.77, and 2.23 mm, respectively, while these sizes were smaller than pure copper. From the Vickers hardness results, the hardness of the Ir-copper alloy was found to have increased by a maximum of 2.2 times compared to pure copper. From the trace element analysis, the copper alloy was fabricated with the expected composition. From the diffusion profile analysis results, it can be seen that 0.059 wt%, 0.030 wt%, and 0.114 wt% of B, Ru, and Ir, respectively, were alloyed in the copper, and it led to change the hardness. Therefore, we verified that alloying of high melting point elements is possible at the low temperature of $1200^{\circ}C$.

Melting induced diffusion bonding of Rene 80 superalloys using boron doping method (Ren380 超合金의 보론 塗布法을 이용한 液化誘導擴散接合法의 硏究)

  • 정재필;강춘식;이보영
    • Journal of Welding and Joining
    • /
    • v.9 no.3
    • /
    • pp.26-33
    • /
    • 1991
  • As it takes very long time for the Transient Liquid Phase(TLP) bonding, we tried to reduce the bonding time by changing insert material for the high diffusivity element. On this study boron powder was doped as a insert material on the bonding surface of Rene 80 superalloy, and diffusion treated at 1150.deg.C under vacuum. On this method differently from the TLP bonding the insert material was not melted during bonding but only the base metal reacted with the boron was inducedly melted. Therefore, as this bonding mechanism is different from the existing ones, it is suggested as a Melting Induced Diffusion Bonding. When this process was used for the diffusion bonding, the bonding time including homogenization decreased greatly compared to the conventional TLP bonding.

  • PDF

UNDERLIGNING THERMOCAPILLARY EFFECTS BY ELECTRON BEAM MELTING OF THIN SPECIMENS

  • Domergue, L.;Camel, D.;Marya, S.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.199-204
    • /
    • 2002
  • Extensive investigations on cast to cast variations observed in steels have underlined the role of thermocapillary or surface tension driven fluid flow in welding operations. The behavior of weld pool under the electric arc is however affected by possible arc modifications linked to microchemistry variations in materials & this limits to some extent the real contribution from surface tension effects. Thus, electron beam welding with high vacuum was used to investigate thermo-capillary effects on thin austenitic stainless steels & nickel based alloys. The weld pool was monitored by video observations to estimate the importance of fluid flow during the melting & solidification phase. The results underline the importance of fluid flow on [mal solidification.

  • PDF

Cogging of premium-quality Alloy 718 (고청정 Alloy718 잉고트 Cogging)

  • 박노광;염종택;임정숙;최상욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.159-166
    • /
    • 2003
  • Microstructures and mechanical properties of VIM/VAR/VAR-processed Ni-based Alloy718 ingot were investigated. Vacuum arc remelting(VAR) results in chill grain zone, columnar grain zone, and equi-axed grain zone in the ingot due to the difference in local solidification processes. Different grain structures of the remelting ingot result in the different hot workability for the given cogging conditions. Experimental results on microstructural inhomogeniety and material flow behavior under billet cogging conditions were presented, and their potential effects on the billet cogging process are discussed.

Consolidation of Binderless and Low-Binder WC hardmetal by Vacuum Sintering (진공 소결공정에 의한 고밀도 바인더리스 및 극저바인더 초경합금의 제조)

  • Min, Byoung-June;Park, Young-Ho;Lee, Gil-Geun;Ha, Gook-Hyeon
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.315-319
    • /
    • 2007
  • Pure WC or WC with low Co concentration less than 0.5 wt.% is studied to fabricate high density WC/Co cemented carbide using vacuum sintering and post HIP process. Considering the high melting point of WC, it is difficult to consolidate it without the use of Co as binder. In this study, the effect of lower Co addition on the microstructure and mechanical properties evolution of WC/CO was investigated. By HIP process after vacuum sintering, hardness and density was sharply increased. The hardness values was $2,800kgf/mm^2$ using binderless WC.

Preparation and oxygen control of Ti-6Al-4V alloys by recycling dental pure Ti scraps (치과용(齒科用) 순(純) 타이타늄 스크랩을 재활용(再活用)한 Ti-6Al-4V 합금(合金)의 제조(製造) 및 산소(酸素) 제어(制御))

  • Oh, Jung-Min;Lee, Back-Kyu;Choi, Good-Sun;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2012
  • The Ti-6Al-4V alloys were prepared by recycling of dental Ti pure scraps using vacuum arc melting process, and their physical properties were evaluated the Ti-6Al-4V alloys with different oxygen concentrations. For the preparation of Ti-6Al-4V alloys, Ti pure scraps used for dental implant were utilized as a raw material, and their different oxygen concentrations were ranged from G1 to G4 grade in ASTM standards. It was confirmed that the weight loss of Al in the composition of Ti-6Al-4V alloy could be controlled under the Ar pressure of 875 torr during the melting of alloy. The oxygen concentrations of the Ti-6Al-4V alloys were ranged from 1170 to 3340 ppm. The vickers hardness change of the Ti-6Al-4V alloys showed a similar behavior with that of pure Ti. As a result, we confirmed a possibility of preparation of Ti-6Al-4V alloy by recycling of dental Ti scraps using vacuum arc melting process in this study.