• Title/Summary/Keyword: Vacuum injection

Search Result 260, Processing Time 0.028 seconds

Development of the Welded Bellows for KSTAR Vacuum Vessel (KSTAR 진공용기용 용접 Bellows 개발)

  • Her, N.I.;Kim, B.C.;Kim, G.H.;Hong, G.H.;Sa, J.W.;Kim, H.K.;Kim, K.M.;Bak, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1098-1102
    • /
    • 2003
  • Vacuum vessel of the KSTAR(Korea Superconducting Tokamak Advanced Research) tokamak is a fully welded structure with D-shaped cross-section. According to the requirements of the physics design, sixteen horizontal ports, sixteen slanted ports, sixteen baking and cooling ports, and twenty-four top and bottom vertical ports are designed for the diagnostics, plasma heating, vacuum pumping, and baking and cooling. Bellows on these ports are used for flexible components to absorb the relative displacement due to the vacuum vessel thermal expansion and the electromagnetic force between the vacuum vessel and the cryostat ports. Fatigue strength evaluation was performed to decide the dimension of the bellows. In order to assure the quality of the bellows, a prototype bellows for the neutral beam injection port has been fabricated and tested prior to main fabrication. It was conformed that the prototype bellows has sufficient fatigue strength and vacuum reliability in the expected load conditions.

  • PDF

Status of squeezed vacuum experiment and introduction to EPR (한국천문연구원의 진공양자조임 광원 개발 및 EPR 실험 소개)

  • Kim, Chang-Hee;Lee, Sungho;Park, June Gyu;Kim, Yunjong;Jeong, Ueejeong;Je, Soonkyu;Seong, Hyeon Cheol;Han, Jeong-Yeol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2021
  • One of the main limitations to the ground- based gravitational-wave (GW) detector sensitivity is quantum noise, which is induced by vacuum fluctuations entering the detector output port. The replacement of this ordinary vacuum field with a squeezed vacuum field has proven to be effective approach to mitigate the quantum noise in the interferometer detector and it is currently used in advanced detectors. However, the current frequency-independent squeezed vacuum cannot reduce quantum radiation pressure noise at low frequencies. A possible solution to reduce quantum noise in the broadband spectrum is the injection of frequency-dependent squeezed (FDS) vacuum. We will report the current status of squeezing experiment at KASI and introduce to the EPR (Einstein-Podolsky-Rosen) entangled state of light, which can realize FDS light without the need for an additional, external cavity.

  • PDF

Study of the Carrier Injection Barrier by Tuning Graphene Electrode Work Function for Organic Light Emitting Diodes OLED (일함수 변화를 통한 그래핀 전극의 배리어 튜닝하기)

  • Kim, Ji-Hun;Maeng, Min-Jae;Hong, Jong-Am;Hwang, Ju-Hyeon;Choe, Hong-Gyu;Mun, Je-Hyeon;Lee, Jeong-Ik;Jeong, Dae-Yul;Choe, Seong-Yul;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.2-111.2
    • /
    • 2015
  • Typical electrodes (metal or indium tin oxide (ITO)), which were used in conventional organic light emitting devices (OLEDs) structure, have transparency and conductivity, but, it is not suitable as the electrode of the flexible OLEDs (f-OLEDs) due to its brittle property. Although Graphene is the most well-known alternative material for conventional electrode because of present electrode properties as well as flexibility, its carrier injection barrier is comparatively high to use as electrode. In this work, we performed plasma treatment on the graphene surface and alkali metal doping in the organic materials to study for its possibility as anode and cathode, respectively. By using Ultraviolet Photoemission Spectroscopy (UPS), we investigated the interfaces of modified graphene. The plasma treatment is generated by various gas types such as O2 and Ar, to increase the work function of the graphene film. Also, for co-deposition of organic film to do alkali metal doping, we used three different organic materials which are BMPYPB (1,3-Bis(3,5-di-pyrid-3-yl-phenyl)benzene), TMPYPB (1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene), and 3TPYMB (Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane)). They are well known for ETL materials in OLEDs. From these results, we found that graphene work function can be tuned to overcome the weakness of graphene induced carrier injection barrier, when the interface was treated with plasma (alkali metal) through the value of hole (electron) injection barrier is reduced about 1 eV.

  • PDF

Performance enhancement of Organic Thin Film Transistor using $C_{60}$ hole injection layer ($C_{60}$(buckminsterfullurene) 홀주입층을 적용한 유기박막트랜지스터의 성능향상)

  • Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.19-25
    • /
    • 2008
  • In this study, we fabricated Organic Thin Film Transistors(OTFTs) with $C_{60}$ hole injection layer between organic semiconductor(pentacene) and metal electrode, and we compared the electrical characteristics of OTFTs with/without $C_{60}$. When the $C_{60}$ hole injection layer was introduced, the mobility and the threshold voltage were improved from 0.298 $cm^2/V{\cdot}s$ and -13.3V to 0.452 $cm^2/V{\cdot}s$ and -10.8V, and the contact resistance was also reduced. When the $C_{60}$ is inserted, the hole injection was enhanced because the $C_{60}$ prevent the unwanted chemical reaction between pentacene and Au. Furthermore, we fabricated the OTFTs using Al as their electrodes. When the OTFTs were made by only aluminum electrode, the channel were not mostly made because of the high hole injection barrier between pentacene and aluminum, but when the $C_{60}$ layer with an optimal thickness was applied between aluminum and pentacene, the device performances were obviously enhanced because of the vacuum energy level shift of Al and the consequent decrease of the hole injection barrier which was induced by the interface dipole formation between $C_{60}$ and Al. The mobility and $I_{ON}/I_{OFF}$ current ratio of OTFT with $C_{60}/Al$ electrode were 0.165 $cm^2/V{\cdot}s$ and $1.4{\times}10^4$ which were comparable with the normal Au electrode OTFT.

Shallow ground treatment by a combined air booster and straight-line vacuum preloading method: A case study

  • Feng, Shuangxi;Lei, Huayang;Ding, Xiaodong;Zheng, Gang;Jin, Yawei
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.129-141
    • /
    • 2021
  • The vacuum preloading method has been used in many countries for soil improvement and land reclamation. However, the treatment time is long and the improvement effect is poor for the straight-line vacuum preloading method. To alleviate such problems, a novel combined air booster and straight-line vacuum preloading method for shallow ground treatment is proposed in this study. Two types of traditional vacuum preloading and combined air booster and straight-line vacuum preloading tests were conducted and monitored in the field. In both tests, the depth of prefabricated vertical drains (PVDs) is 4.5m, the distance between PVDs is 0.8m, and the vacuum preloading time is 60 days. The prominent difference between the two methods is when the preloading time is 45 days, the injection pressure of 250 kPa is adopted for combined air booster and straight-line vacuum preloading test to inject air into the ground. Based on the monitoring data, this paper systematically studied the mechanical parameters, hydraulic conductivity, pore water pressure, settlement and subsoil bearing capacity, as determined by the vane shear strength, to demonstrate that the air-pressurizing system can improve the consolidation. The consolidation time decreased by 15 days, the pore water pressure decreased to 60.49%, and the settlement and vane shear strengths increased by 45.31% and 6.29%, respectively, at the surface. These results demonstrate the validity of the combined air booster and straight-line vacuum preloading method. Compared with the traditional vacuum preloading, the combined air booster and straight-line vacuum preloading method has better reinforcement effect. In addition, an estimation method for evaluating the average degree of consolidation and an empirical formula for evaluating the subsoil bearing capacity are proposed to assist in engineering decision making.

WC-Co Milling Inserts Manufactured by Powder Injection Molding (분말사출성형에 의한 WC-Co 계 milling insert 제조)

  • 성환진
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.88-95
    • /
    • 1999
  • The purpose of this study is to investigate the manufacturing feasibility of WC-Co milling inserts via Powder Injection Molding (PIM) process. WC-Co is used in a wide variety of cutting tools due to its high hardness, stiffness, compressive strength and wear resistance properties. WC-Co parts for a high stress application were conventionally produced by the press and sinter method, which were Iimited to 2 dimensional shapes. Manufacturing WC-Co parts for a high stress application by PIM implies that tool efficiency can be highly improved due to increased freedom is design. P30 grade WC powder (WC-Co-TiC-TaC system) was mixed with RIST-5B133 binder and injection molded into milling inserts (Taegu Tech. Model WCMX 06T 308). The mean grain size of the powder was about 0.8$\mu$m. Injection molded specimens were debound by solvent extraction and thermal degradation method at various conditions. The specimens were sintered at 140$0^{\circ}C$ for 1 hr in vacuum. Carbon content, weight loss, dimensional change, and macro defects of the specimen were carefully monitored at each stage of the PIM process. PIMed WC-Co milling inserts reached 100% full density after sinteing. Its mechanical properties and micro-structures were comparable with the press and sintered milling insert. Carbon content of the sintered WC-Co insert was mainly determained by the atmosphere of thermal debinding. By controlling powder loading and injection molding condition, dimensional accuracy could be obtained within 0.4%. We confirm that PIM can not only be an alternative manufacturing method for WC-Co parts economically but also provide a design freedom for more effieient cutting tools.

  • PDF

A Study on Bubbles in The RIM Process (림성형 공정의 기포에 관한 연구)

  • 양화준;강대원;강영중;김성준;장태식;이일엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.303-306
    • /
    • 2001
  • To shorten the delivery time for new products, a lot of prototype plastic parts manufacturing technologies have been developed including injection molding, vacuum casting, thermal forming and so on. Among them, RIM is becoming one of a important soft tooling methods to produce prototype and mass production parts within short time. Further more, as the rapid prototyping technology based tooling methods are playing an important role in prototype manufacturing industry, the utility of the RIM is increasing. But few analyses and mold design techniques have been developed so far due to its chemical and mechanical complexity during the packing and curing process. This research suggests mold gate design criteria to prevent bobbles from molded parts through simplified mathematical model and change of bubble sizes according to the geometry of the molded parts through experiments. Also this study shows the differences of bobble generation mechanism between RIM and injection molding.

  • PDF

A Study on the Flow Characteristics of a Quick Injection Agitator (급속 분사식 교반기의 유동 특성 연구)

  • Youn, K.J.;Ahn, B.J.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.508-513
    • /
    • 2003
  • A quick injection agitator is used to mix working fluids. In this study, numerical analyses are carried out to investigate the performance of a quick injection agitator with different gaps between the impeller and vacuum enhancer. A commercial CFD code is used to compute the 3-D viscous flow field within the impeller of agitatior. Numerical results are graphically depicted with different gaps. Special attention is paid to the following topics: pressure distribution, velocity gradient, volume fraction.

  • PDF

Effect of Residual Carbon on the Microstructure Evolution during the Sintering of M2 HSS Parts Shaping by Metal Injection Moulding Process

  • Herranz, G.;Levenfeld, B.;Varez, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.225-226
    • /
    • 2006
  • In this present investigation, Metal Injection Moulding (MIM) of M2 High Speed Steel (HSS) parts using a wax-High Density Polyethylene (HDPE) binder is shown. The elimination of organic binder was carried out by thermal debinding under inert atmosphere. In order to keep carbon in the sample that could improve the sintering process, incomplete debinding was performed between 450 and $600^{\circ}C$. The specimens were sintered at temperatures between 1210 and $1280^{\circ}C$ in high vacuum atmosphere, obtaining the 98% of the theoretical density. In the samples with higher residual carbon content, the sintering window was extended up to 20 degrees and the optimum temperature was lower.

  • PDF

Metal Injection Moulding of Duplex Stainless Steels

  • Sotomayor, M. E.;Varez, A.;Levenfeld, B.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.507-508
    • /
    • 2006
  • In this communication the development of a new metal injection moulding (MIM) system for duplex stainless steels is presented. The metal powders were prepared by premixing 316L and 430L stainless steels gas atomised powders in a ratio of 50:50. The binder used to prepare the feedstock was composed by HDPE and paraffin wax. Torque measurements of the mixture indicated that the maximum amount of metal was 68 vol%. The polymeric part was driven off by thermal debinding and the sintering was performed in low vacuum. The final densities were close to the theoretical ones.

  • PDF