• Title/Summary/Keyword: Vacuum induction melting (VIM)

Search Result 14, Processing Time 0.022 seconds

Development of a micro-scale Y-Zr-O oxide-dispersion-strengthened steel fabricated via vacuum induction melting and electro-slag remelting

  • Qiu, Guoxing;Zhan, Dongping;Li, Changsheng;Qi, Min;Jiang, Zhouhua;Zhang, Huishu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1589-1595
    • /
    • 2019
  • In this paper, the CLAM steel strengthened by micro-scale Y-Zr-O was prepared by vacuum induction melting followed by electroslag remelting (VIM-ESR). Yttrium (Y) and zirconium (Zr) were easy to aggregates into massive yttrium-zirconium-rich inclusions in the steel melted by vacuum induction melting (VIM), which would interrupt the continuity of the matrix and reduce the mechanical properties of steel. Micron-sized Y-Zr-O inclusions would be produced with the removal of original blocky Y-Zr-rich inclusions and the submicron-sized inclusions smaller than $0.2{\mu}m$ could be retained in the steel. The small grain size and the better refinement and distribution uniformity of Y-Zr-O inclusions after remelting would be responsible for the better yield strength and toughness. For VIM-ESR alloy, the ultimate tensile strength is 749 MPa and the yield strength is 642 MPa at room temperature, meanwhile they are 391 MPa and 367 MPa at $600^{\circ}C$, respectively. Meanwhile, the ductile-brittle transition temperature (DBTT) reduced from $-43^{\circ}C$ (VIM) to $-76^{\circ}C$ (VIM-ESR).

Deformation Behavior & Rolling Effect on the Hot Rolling of High Nitrogen Stainless Steel (고질소강의 열간압연시 변형거동 및 압연효과)

  • Kim, Y.D.;Kim, D.K.;Lee, J.W.;Bae, W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.329-332
    • /
    • 2008
  • Nowadays, It is required human body-friendly, good mechanical properties, and economical efficiency material, simultaneously. The material to meet above requirement condition rear up high nitrogen stainless steel(HNS). However, HNS have a lot of problem such as poor workability, hot crack sensitivity. So, It is needed the condition of plastic working to overcome above many problem. In this study, VIM ingot with 100kg was made by pressurized vacuum induction melting. And then, The slab perform for hot rolling was prepared by open-die forging. Hot rolling process was performed by computer simulation according to change of height reduction, rolling temperature, heating numbers, rolling pass and so forth. The results of analysis were investigated between analysis and lab-scale rolling product.

  • PDF

Surface and Corrosion Properties of Electrolytic Polished 316L Stainless Steel by Double Melting (VIM and VAR)

  • Hyunseung Lee;Gangsan Kim;Seungho Han;Man-Sik Kong;Jung-Yeul Yun;Si Young Chang
    • Journal of Korea Foundry Society
    • /
    • v.43 no.5
    • /
    • pp.223-229
    • /
    • 2023
  • In this study, STS316L produced by a double-melting process involving vacuum induction melting (VIM) and vacuum arc remelting (VAR) was subjected to extrusion and drawing to form a tube and was subsequently electrolytic polished (EP). The grain size of the obtained STS316L without EP was approximately 55 ㎛, with no difference found after EP. The thickness of the EP layer was measured by AES and TEM, showing values of approximately 10 nm and 15 nm, respectively. After EP, the Cr/Fe and CrO/FeO ratios of the passive layer increased from 1.48 to 1.62 and from 2.15 to 2.26, respectively, while the surface roughness decreased significantly from 0.255 to 0.024 ㎛. Consequently, the corrosion rate decreased in both NaCl and HCl solutions after the EP process. Additionally, the amounts of eluted Cr and Fe ions were reduced from 1.2 to 0.8 ppb and 10.3 to 0.8 ppb, respectively. Furthermore, polarization tests revealed that STS316L treated with EP required a lower current density to reach a passive state, indicating that corrosion behavior was retarded.

Cogging of premium-quality Alloy 718 (고청정 Alloy718 잉고트 Cogging)

  • 박노광;염종택;임정숙;최상욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.159-166
    • /
    • 2003
  • Microstructures and mechanical properties of VIM/VAR/VAR-processed Ni-based Alloy718 ingot were investigated. Vacuum arc remelting(VAR) results in chill grain zone, columnar grain zone, and equi-axed grain zone in the ingot due to the difference in local solidification processes. Different grain structures of the remelting ingot result in the different hot workability for the given cogging conditions. Experimental results on microstructural inhomogeniety and material flow behavior under billet cogging conditions were presented, and their potential effects on the billet cogging process are discussed.

Characteristics of High Frequency Induction-Hardened Bearing Steel Produced by VIM (VIM에 의해 제조된 고주파 유도경화 베어링강의 특성에 관한 연구)

  • Choe, Byeong-Yeong;Jang, Jeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1176-1181
    • /
    • 1998
  • Characteristics of high frequency induction- hardened bearing steel have been investigated using 0.55wt.% C-1.68wt.% Mn specimens produced by vacuum induction melting (VIM). The K4 value in DIN 57602 of the specimens was assessed to be 6.41, high level of cleanliness. The specimens were high frequency induction-hardened to form heterogeneous submicron- lath martensite in the surface hardened layer with about 2.5mm in effective depth. Rolling contact fatigue tests were conducted in elasto-hydrodynamic lubricating conditions under a maximum Hertzian contact stress of$ 492kgmm^{-2}$ . It was found that microhardness in the subsurface, up to about $500\mu\textrm{m}$ in depth, below the raceway of rolling contact fatigued specimens was increased in comparison with that of induction-hardened layers. The depth of maximum microhardness- increased region was about $100\mu\textrm{m}$ from surface, showing white etching area. Crack initiation and propagation in the white etching area below the raceway of rolling contact fatigued specimens were observed.

  • PDF

The Effects of Cyclic Heat Treatment Process for Fine Microstructure of TiAl Cast Alloy (주조용 TiAl 합금의 조직 미세화를 위한 반복열처리 공정 조건에 관한 연구)

  • Kong, Man-Sik;Yang, Hyunseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.5
    • /
    • pp.195-200
    • /
    • 2019
  • For expanding the applications and workability of TiAl alloy, elongation is very important property. Fine microstructure is needed for elongation and physical properties of TiAl alloys. In this study, The effects of cyclic heat treatment process for fine microstructure of Ti-46Al-Nb-W-Cr-Si-C alloy, which was made by VAR (vacuum arc remelting) and VIM(vacuum induction melting) centrifugal casting process, was investigated. Cycle heat treatment process was very effective for recrystallization of this TiAl system, which has microstructure size of $50{\sim}100{\mu}m$ through pre-heat treatment, cyclic heat treatment in ${\alpha}+{\gamma}$ phase region and solution heat treatment respectively. Refined grain size was finally confirmed by photos of optical microscope and scanning electron microscope.

Interaction study of molten uranium with multilayer SiC/Y2O3 and Mo/Y2O3 coated graphite

  • S.K. Sharma;M.T. Saify;Sanjib Majumdar;Palash K. Mollick
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1855-1862
    • /
    • 2023
  • Graphite crucibles are used for melting uranium and its alloys in VIM furnace. Various coating materials namely Al2O3, ZrO2, MgO etc. are applied on the inner surface of the crucibles using paint brush or thermal spray technique to mitigate U-C interaction. These leads to significant amount of carbon pick-up in uranium. In this study, the attempts are made to develop multilayer coatings comprising of SiC/Y2O3 and Mo/Y2O3 on graphite to study the feasibility of minimizing U-C interaction. The parameters are optimized to prepare SiC coating of about 70㎛ thickness using CVD technique on graphite coupons and subsequently Y2O3 coating of about 250㎛ thickness using plasma spray technique. Molybdenum and Y2O3 layers were deposited using plasma spray technique with 70㎛ and 250㎛ thickness, respectively. Interaction studies of the coated graphite with molten uranium at 1450℃ for 20 min revealed that Y2O3 coating with SiC interlayer provides physical barrier for uranium-graphite interaction, however, this led to the physical separation of coating layer. Y2O3 coating with Mo interlayer provided superior barrier effect showing no degradation and the coatings remained intact after interaction tests. Therefore, the Mo/Y2O3 coating was found to be a promising solution for minimizing carbon pick-up during uranium/uranium alloy melting.

Hot and Cold Rolling Characteristic with High-Nitrogen Steel of Austenitic Stainless (HNS) (오스테나이트계 고질소 스테인레스 강의 열간 및 냉간 압연특성)

  • Lee, J.W.;Kim, D.S.;Kim, B.K.;Kim, D.K.;Kim, Y.D.;Cha, D.J.;Lee, M.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.99-101
    • /
    • 2008
  • At 21st century, material development concepts were changed to fulfill the environmental friendly demands. This study is to study the effect of pressurized nitrogen gas and manganese in high nitrogen austenitic stainless steel(HNS) in which N and Mn elements substitute the nickel element. 100kg HNS ingots were made by Pressurized Vacuum Induction Melting(P-VIM) and were forged according to free forging process. As forged HNS were hot and cold rolled by pilot scale rolling machine. Depending on the rolling condition, the mechanical properties of HNS were changed. The roll thrust and sheet folding showed asymmetry condition between work and drive side during cold and hot rolling. The purpose of this study are to improve workability the hot and cold rolling machine and to set the conditions for establishing the rolling process.

  • PDF

The Effect on the Strength According to Carbon Content of Kovar Steel (코바강의 탄소첨가량에 따른 강도에 미치는 영향)

  • Choi, Byung-Hui;Choi, Byung-Ky
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.28-33
    • /
    • 2010
  • Ni alloy steel is able to use during long time because of good acid and corrosion resistance. So, it's research has focused on developing the alternative alloy which is economically feasible. Recently, consumption of Kovar steel is gradually increased in field of the jet engine and the gas turbine because of its low thermal expansive characteristics. The specimens of Kovar steel(29%Ni-17%Co) contain 0.00%C, 0.03%C, 0.06%C, 0.10%C and 0.20%C, respectively. Ingots are manufactured by VIM(vacuum induction melting furnace) and then specimens are made by automatic hot rolling after heat treatment. Strength of Kovar steel according to carbon contents is estimated by hardness, tensile and impact test. Hardness of the 0.20%C specimen is more improved approximately 14.4% than one of base metal. Its strength increases 32.4% of a base metal, and its impact energy is also enhance 11.5%.

Effect of Ball milling on the Hydrogenation Properties of Mg-Ni Powder Mixtures (볼밀링이 마그네슘-니켈 혼합분말의 수소화 반응특성에 미치는 영향)

  • Han, Ji-Seong;Kim, Ki-Won;Ahn, In-Shup;Ahn, Hyo-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.2
    • /
    • pp.85-92
    • /
    • 1998
  • The hydrogenation behavior of $Mg_2Ni$ powder prepared by ball milling has been studied. Ball milled $Mg_2Ni$ was transformed to an amorphous-like state after 200hr ballmilling, and crystallized to $Mg_2NiH_x$ by hydrogenation at got. The hydrogen storage capacity gradually increased as a function of ball milling time. $Mg_2Ni$ by 400hr ballmilling shows higher hydrogen storage capacity (3H/M) than $Mg_2Ni$ by VIM(Vacuum Induction Melting).

  • PDF