• 제목/요약/키워드: Vacuum gas oil

검색결과 27건 처리시간 0.024초

Compositional Characterization of Petroleum Heavy Oils Generated from Vacuum Distillation and Catalytic Cracking by Positive-mode APPI FT-ICR Mass Spectrometry

  • Kim, Eun-Kyoung;No, Myoung-Han;Koh, Jae-Suk;Kim, Sung-Whan
    • Mass Spectrometry Letters
    • /
    • 제2권2호
    • /
    • pp.41-44
    • /
    • 2011
  • Molecular compositions of two types of heavy oil were studied using positive atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Vacuum gas oil (VGO) was generated from vacuum distillation of atmospheric residual oil (AR), and slurry oil (SLO) was generated from catalytic cracking of AR. These heavy oils have similar boiling point ranges in the range of 210-$650^{\circ}C$, but they showed different mass ranges and double-bond equivalent (DBE) distributions. Using DBE and carbon number distributions, aromatic ring distributions, and the extent of alkyl side chains were estimated. In addition to the main aromatic hydrocarbon compounds, those containing sulfur, nitrogen, and oxygen heteroatoms were identified using simple sample preparation and ultra-high mass resolution FT-ICR MS analysis. VGO is primarily composed of mono- and di-aromatic hydrocarbons as well as sulfur-containing hydrocarbons, whereas SLO contained mainly polyaromatic hydrocarbons and sulfur-containing hydrocarbons. Both heavy oils contain polyaromatic nitrogen components. SLO inludes shorter aromatic alkyl side chains than VGO. This study demonstrates that APPI FT-ICR MS is useful for molecular composition characterization of petroleum heavy oils obtained from different refining processes.

Combustion Characteristics of a Hot Water Boiler System Convertibly Fueled by Rice Husk and Heavy Oil - Heavy Oil Combustion Characteristics -

  • Kim, Myoung Ho;Kim, Dong Sun;Park, Seung Je
    • Journal of Biosystems Engineering
    • /
    • 제38권4호
    • /
    • pp.306-311
    • /
    • 2013
  • Purpose: With the ever-rising energy prices, thermal energy heavily consuming facilities of the agricultural sector such as commercialized greenhouses and large-scale Rice Processing Complexes (RPCs) need to cut down their energy cost if they must run profitable businesses continually. One possible way to reduce their energy cost is to utilize combustible agricultural by-products or low-price oil instead of light oil as the fuel for their boiler systems. This study aims to analyze the heavy oil combustion characteristics of a newly developed hot water boiler system that can use both rice husk and heavy oil as its fuel convertibly. Methods: Heavy oil combustion experiments were conducted in this study employing four fuel feed rates (7.6, 8.5, 9.5, 11.4 $l/h$) at a combustion furnace vacuum pressure of 500 Pa and with four combustion furnace vacuum pressures (375, 500, 625, 750 Pa) at fuel feed rates of 9.5 and 11.4 $l/h$. Temperatures at five locations inside the combustion furnace and 20 additional locations throughout the whole hot water boiler system were measured to ascertain the combustion characteristics of the heavy oil. From the temperature measurement data, the thermal efficiency of the system was calculated. Flue gas smoke density and concentrations of air-polluting components in the flue gas were also measured by a gas analyzer. Results: As the fuel feed rate or combustion furnace vacuum pressure increased, the average temperature in the combustion furnace decreased but the thermal efficiency of the system showed no distinctive change. On the other hand, the thermal efficiency of the system was inversely proportionally to the vacuum level in the furnace. For all experimental conditions, the thermal efficiency remained in the range of 80.1-89.6%. The CO concentration in the flue gas was negligibly low. The NO and $SO_2$ concentration as well as the smoke density met the legal requirements. Conclusions: Considering the combustion temperature characteristics, thermal efficiency, and flue gas composition, the optimal combustion condition of the system seemed to be either the fuel feed rate of 9.5 $l/h$ with a combustion furnace vacuum pressure of 375 Pa or a fuel feed rate of 11.4 $l/h$ with a furnace vacuum pressure between 500 Pa and 625 Pa.

Performance Analysis of a Vacuum Pyrolysis System

  • Ju, Young Min;Oh, Kwang Cheol;Lee, Kang Yol;Kim, Dae Hyun
    • Journal of Biosystems Engineering
    • /
    • 제43권1호
    • /
    • pp.14-20
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the performance of a vacuum pyrolysis system, to analyze bio-oil characteristics, and to examine the applicability for farm-scale capacity. Methods: The biomass was pyrolyzed at 450, 480, and $490^{\circ}C$ on an electric heat plate in a vacuum reactor. The waste heat from the heat exchanger of the reactor was recycled to evaporate water from the bio-oil. The chemical composition of the bio-oil was analyzed by gas chromatography-mass spectrometry (GC-MS). Results: According to the analysis, the moisture content (MC) in the bio-oil was approximately 9%, the high heating value (HHV) was approximately 26 MJ/kg, and 29 compounds were identified. These 29 compounds consisted of six series of carbohydrates, 17 series of lignins, and six series of resins. Conclusions: Owing to low water content and the oxygen content, the HHV of the bio-oil produced from the vacuum reactor was higher by about 6 MJ/kg than that of the bio-oil produced from a fluidized bed reactor.

Corrosion and Materials Selection for Bitumen with Heavy Naphthenic Acid in Canadian Oil Sands

  • Eun, Thomas Jung-Chul
    • Corrosion Science and Technology
    • /
    • 제7권6호
    • /
    • pp.350-361
    • /
    • 2008
  • Canada's oil sands contain one of the largest reserves of oil in the world. According to recent estimates, there are nearly 180 billion barrels of oil in the Canadian oil sands trapped in a complex mixture of sand, water and clay. More than 40 companies have been currently operating or developing oil sands facilities since the first production in 1967. The process of oil sands upgrading is similar with down stream refinery, but the corrosion environment in upgrading refinery is often more severe than in the refinery because of high chlorides, mineral contents, carbonic acid, heavy viscosity and fouling, higher naphthenic acid [$NA-R(CH_{2})nCOOH$], and greater sulfur contents. Naphthenic acid corrosion (NAC) which is one of the most critical corrosion issues in up & downstream refinery plants was observed for the first time in 1920's in refinery distillation processes of Rumania, Azerbaizan (Baku), Venezuela, and California. As a first API report, the 11th annual meeting stated sources and mechanism of NAC in early 1930's. API has been developing the risk base standards, such as API RP580, 571, and Publication 581 which are based on the worst NAC damage in the world since 2000. Nevertheless not only the NAC phenomena and control in Canadian sands oil process are not much widely known but also there are still no engineering guidances for the Canadian sands oil in API standards. This paper will give NAC phenomina and materials selection guidance against NA environment in Canadian oil sands upgrading processes.

습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum residue)의 가스화 특성연구 (Experimental study on the characteristics of Vacuum residue gasification in an entrained-flow gasifier)

  • 최영찬;박태준;김재호;이재구;홍재창;김용구;나재익
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.171-184
    • /
    • 2002
  • 우리나라 5개 정유사에서 일간 생산되는 중질잔사유 (Vacuum Residue) 량은 약 200,000 B/d이며, 일부는 Asphalt 또는 Sulfur fuel oil, 기타 탈황공정(RHD)둥에서 upgrading 되고 있다. 중질잔사유는 유황 및 중금속 물질의 함유량이 높아 가스화를 통한 효율적인 이용이 요구되고 있으며, 최근들어 효율적인 중질잔사유의 사용을 위하여 SK정유와 LG, Caltex에서 435-500 MWe IGCC 발전소 및 수소 제조공정을 위한 타당성 조사를 한 바 있다. 현재 한국에너지기술연구원에서는 습식분류상 가스화장치를 이용하여 중질잔사유가스화 특성에 관한 연구를 수행하고 있다. 실험은 반응온도 : 1,100~1,25$0^{\circ}C$, 반응압력 : 1~6kg/$ extrm{cm}^2$G, oxygen/V.R ratio : 0.8~0.9 and steam/V.R ratio : 0.4~0.5를 유지하며 수행되었으며, 실험을 통해 합성가스(CO+H$_2$) 조성 : 85~93%, 생성가스 유량 : 50~110Nm$^3$/hr., 발열량 : 2,300~3,000 ㎉/Nm$^3$, 탄소전환율 : 65~92 및 냉가스효율 = 60~70%를 얻을 수 있었다. 아울러, 평형모델을 이용하여 중질잔사유가스화 공정을 모형화 하였으며 계산결과를 실험결과와 비교하여 모델의 타당성을 검토하였다.

  • PDF

습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum Residue)의 가스화 특성연구 (Experimental Study on the Characteristics of Vacuum Residue Gasification in an Entrained-flow Gasifier)

  • 최영찬;박태준;김재호;이재구;홍재창;김용구;나재익
    • 에너지공학
    • /
    • 제12권1호
    • /
    • pp.49-57
    • /
    • 2003
  • 우리나라 5개 정유사에서 일간 생산되는 중질잔사유 (Vacuum Residue)량은 약 200.000 B/d이며, 일부는 Asphalt 또는 Sulfur fuel oil, 기타 탈황공정(RHD) 등에서 upgrading 되고 있다. 중질잔사유는 유황 및 중금속 물질의 함유량이 높아 가스화를 통한 효율적인 이용이 요구되고 있으며, 최근들어 효율적인 중질잔사유의 사용을 위하여 SK정유와 LG Caltex에서 435~500 MWe IGCC 발전소 및 수소 제조공정을 위한 타당성 조사를 한 바 있다. 현재 한국에너지기술연구원에서는 습식분류상 가스화장치를 이용하여 중질잔사유가스화 특성에 관한 연구를 수행하고 있다. 실험은 반응온도: 1,100~1,25$0^{\circ}C$, 반응압력: 1~6 kg/$\textrm{cm}^2$G, oxygen/V.R ratio: 0.8~0.9 and steam/V.R ratio: 0.4~0.5를 유지하며 수행되었으며, 실험을 통해 합성가스(CO+H$_2$) 조성 : 85~93%, 생성가스 유량: 50~110 Nm$^3$/hr. 발열량: 2,300~3,000 k㎈/Nm$^3$, 탄소전환율: 65~92 및 냉가스효율: 60~70%를 얻을 수 있었다. 아울러, 평형모델을 이용하여 중질잔사유가스화 공정을 모형화하였으며 계산결과를 실험결과와 비교하여 모델의 타당성을 검토하였다.

고속회전체 밸런싱 시험기 개발 (Development of High Speed Rotor Balancing Machine)

  • 이영섭;이정훈;김창근;김명섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1078-1083
    • /
    • 2000
  • A high speed rotor balancing machine was developed, which is capable of balancing a flexible rotor in high speed. The machine is largely consisted of vacuum chamber, oil supply system and vacuum pump system. And, in order to investigate performances of the machine, various tests were carried. After high speed rotor balancing of gas turbine engine rotor using influence coefficient method, the flexible engine rotor passed smoothly through its critical speed.

  • PDF

반도체장비용 오링의 종합 신뢰성 평가기술에 관한 연구 (A Study on the Reliability Evaluation System for O-ring of Semiconductor Equipments)

  • 김동수;김광영;최병오;박화영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.613-617
    • /
    • 2001
  • The test items like as endurance, air leakage and oil endurance test is requested for reliability evaluation about O-ring which is a kind of core machinery accessories of semi-conduct manufacturing equipment. For verification of these, we design and manufactured a test system for endurance, air leakage and oil endurance of O-ring for semi-conduct manufacturing equipment, and also performed the test for two kinds of O-ring, as it were Viton and Kalretz. The characteristics of this test equipment consist in realization of the test conditions of semi-conduct manufacturing equipment and satisfying the test method. The test conditions are cut gas, vacuum grade, temperature and revolution numbers in the endurance test system, vacuum grade and temperature in the air leakage test system, temperature and time in the oil endurance test system. The separating test results for wearing which is an oil endurance test item, the wearing index of domestic produced Viton O-ring is higher than foreign product by 2%, wearing rate of Kalretz O-ring better than Viton O-ring by 17%, and particles existed in various place. The test result of air leakage which is measured through the RGA sensor used Helium, the vacuum grade was $10^-3$Torr. And the test result of oil endurance, the volume change rate was 7~15%. Hereafter, we intend to analysis the reliability test evaluation and to utilize for domestic manufacturing companies by establishing data base and developing reliability softwares.

  • PDF

침탄처리한 SCM420H의 미끄럼 마모 특성에 미치는 침탄 조건의 영향 (Effects of Carburizing Process on Sliding wear Behavior of Carburized SCM420H Steel)

  • 이한영;이규헌
    • Tribology and Lubricants
    • /
    • 제36권1호
    • /
    • pp.18-26
    • /
    • 2020
  • The effects of the carburizing process on the sliding wear behavior of SCM420H steel have been investigated. In particular, the effects of grain boundary corrosion observed in the surface layer after gas carburizing and the effects of hardness of the carburized cases after heat-treatment on the sliding wear properties were examined. Pin specimens carburized by two methods (gas carburizing and vacuum carburizing) were tempered at two temperatures of 180℃ and 400℃ after oil-quenching, respectively. Sliding wear tests were carried out against heattreated SKH51 steel at several sliding speeds using a pin-on-disc type test machine. As results, it can be found that there is no difference in the wear behavior between the pins carburized using two methods. This implies that the grain boundary corrosion that formed in the surface layer after gas carburizing has no effect on the sliding wear behavior of carburized SCM420H steels. Additionally, there is no significant difference in the wear behavior between carburized pins tempered at 400℃ and at 180℃ after oil-quenching, regardless of the carburizing method. This is because carburized pins tempered at 400℃ have a troostite structure, which exhibits higher tribochemical reactivity even though its hardness is lower than that of martensite structure. In this respect, it can be considered that good wear resistance of carburized cases is maintained at least until the effective case depth.

Ultrahigh Vacuum Technologies Developed for a Large Aluminum Accelerator Vacuum System

  • Hsiung, G.Y.;Chang, C.C.;Yang, Y.C.;Chang, C.H.;Hsueh, H.P.;Hsu, S.N.;Chen, J.R.
    • Applied Science and Convergence Technology
    • /
    • 제23권6호
    • /
    • pp.309-316
    • /
    • 2014
  • A large particle accelerator requires an ultrahigh vacuum (UHV) system of average pressure under $1{\times}10^{-7}$ Pa for mitigating the impact of beam scattering from the residual gas molecules. The surface inside the beam ducts should be controlled with an extremely low thermal outgassing rate under $1{\times}10^{-9}Pa{\cdot}m^3/(s{\cdot}m^2)$ for the sake of the insufficient pumping speed. To fulfil the requirements, the aluminum alloys were adopted as the materials of the beam ducts for large accelerator that thanks to the good features of higher thermal conductivity, non-radioactivity, non-magnetism, precise machining capability, et al. To put the aluminum into the large accelerator vacuum systems, several key technologies have been developed will be introduced. The concepts contain the precise computer numerical control (CNC) machining process for the large aluminum ducts and parts in pure alcohol and in an oil-free environment, surface cleaning with ozonized water, stringent welding process control manually or automatically to form a large sector of aluminum ducts, ex-situ baking process to reach UHV and sealed for transportation and installation, UHV pumping with the sputtering ion pumps and the non-evaporable getters (NEG), et al. The developed UHV technologies have been applied to the 3 GeV Taiwan Photon Source (TPS) and revealed good results as the expectation. The problems of leakage encountered during the assembling were most associated with the vacuum baking which result in the consequent trouble shootings and more times of baking. Then the installation of the well-sealed UHV systems is recommended.