• Title/Summary/Keyword: Vacuum condition

Search Result 921, Processing Time 0.033 seconds

Effects of Melting and Rolling Condition of Ti-10wt.%Ta-10wt.%Nb Alloy on Microstructure Variation (용해 및 가공조건 변화가 Ti-10wt.%Ta-10wt.%Nb합금의 미세조직에 미치는 영향)

  • Lee, Doh-Jae;Lee, Kwang-Min;Kim, Min-Ki;Lee, Kyung-Ku
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.114-120
    • /
    • 2002
  • A new titanium based alloy, Ti-10Ta-10Nb, has designed to examine the improved mechanical properties and biocompatibility. A specimen of titanium alloy was melted in a consumable vacuum arc furnace and homogenized at $1050^{\circ}C$ for 24 h. The effect of hot rolling on microstructure was estimated after rolling at $400^{\circ}C$ and $800^{\circ}C$ respectively. Surface of melted alloy by consumable vacuum arc melting was consisted of rough surface and it was changed to sound surface by coating of $ZrO_2$ slurry on copper mold surface. The hardness of Ti-10Ta-10Nb alloy increased with the amount of${\alpha}+{\beta}$ phase. Ti-10Ta-10Nb alloy showed $Widmanst{\"{a}}ten$ structure by hot rolling at $800^{\circ}C$ and in the rolling ${\beta}-region$ was negligible effects on microstructure refining.

Mechanical Properties of Extruded Bars of Gas Atomized AZ31+1wt%MM Alloy Powders (진공가스분무한 AZ31+1%MM합금 분말 압출재의 기계적 성질)

  • Kim, Yeon-Wook;Do, Dal-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.110-115
    • /
    • 2000
  • In this study, the powders of Mg-3wt%Al-1wt%Zn-1wt%MM alloy were produced under vacuum condition by the inert gas atomization and the rapidly solidified powders were consolidated by the vacuum hot extrusion. Then the structural change of powders during extrusion was investigated. The effects of misch metal addition to AZ31 on mechanical properties of extruded bars were also examined. During extrusion of the rapidly solidified powders, their dendrite structure was broken into fragments and remained as grains of 2 ${\mu}m$ size in extruded bar. The Mg-Al-Ce intermetallic compounds formed in the interdendritic regions of powders were broken finely, too. The yield stress, tensile strength and ductility obtained in as-extruded Mg-3wt%Al-1wt%Zn-1wt%MM alloy were ${\sigma}_{0.2}=325$ MPa, ${\sigma}_{T.S.}=417$ MPa and ${\varepsilon}=16.8%$. All of these improvements on mechanical properties result from the refined micostructure and second-phase dispersions.

  • PDF

Growth and Characterization of Vertically well Aligned Crbon Nanotubes on Glass Substrate by Plasma Enhanced Hot Filament Chemical Vapor deposition

  • Park, Chong-Yun;Yoo, Ji-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.210-210
    • /
    • 2000
  • Vertically well aligned multi-wall carbon nanotubes (CNT) were grown on nickel coated glass substrates by plasma enhanced hot filament chemical vapor deposition at low temperatures below 600$^{\circ}C$. Acetylene and ammonia gas were used as the carbon source and a catalyst. Effects of growth parameters such as pre-treatment of substrate, plasma intensity, filament current, imput gas flow rate, gas composition, substrate temperature and different substrates on the growth characteristics of CNT were systematically investigated. Figure 1 shows SEM image of CNT grown on Ni coated glass substrate. Diameter of nanotube was 30 to 100nm depending on the growth condition. The diameter of CNT decreased and density of CNT increased as NH3 etching time etching time increased. Plasma intensity was found to be the most critical parameter to determine the growth of CNT. CNT was not grown at the plasma intensity lower than 500V. Growth of CNT without filament current was observed. Raman spectroscopy showed the C-C tangential stretching mode at 1592 cm1 as well as D line at 1366 cm-1. From the microanalysis using HRTEM, nickel cap was observed on the top of the grown CNT and very thin carbon amorphous layer of 5nm was found on the nickel cap. Current-voltage characteristics using STM showed about 34nA of current at the applied voltage of 1 volt. Electron emission from the vertically well aligned CNT was obtained using phosphor anode with onset electric field of 1.5C/um.

  • PDF

dispersion characteristics and RE power absorption for a mangetized plasma (자화 플라즈마의 분산특성과 유효광학계수 변화)

  • 라상호;정재성;오범환;박세근
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.285-289
    • /
    • 2000
  • It has been well known that weak axial magnetic field on the process plasma enhances plasma density. As the magnetic field helps a specific polarized EM wave mode to penetrate into the plasma, the energy transfer to the plasma enhances and the ion density increases. We have analyzed systematic change of the dispersion relation caused by the cyclotron resonance condition. This resonance occurs at near 5 gauss to provide minimum penetration depth, as known before. RF penetration depth increases abruptly beyond the magnetic field of 5 gauss, and this phenomena lessen as the collision frequency increases.

  • PDF

A Study on the preparation of optimum piezoelectric organic thin films of PVD method and switch characteristic (진공증착법을 이용한 최적의 압전성 유기박막의 제조와 스위치 특성에 관한 연구)

  • 박수홍;이선우;이희규
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.194-200
    • /
    • 1999
  • In this paper studied was the piezoelectric properties of the $\beta$-PVDF organic thin films prepared by physical vapour deposition method. The molecular orientation of organic thin films was controlled by the application of an electric field and variation of substrate temperature during the evaporation process. Optimum conditions of manufacturing $\beta$-PVDF organic thin film by physical vapor deposition method is to keep at the substrate temperature of $80^{\circ}C$, at the applied electric field of 142.8 kV/cm. The voltage output coefficient increased from 1.39 to 7.04V increasing the force moment.

  • PDF

High density plasma etching of CoFeB and IrMn magnetic films with Ti hard mask

  • Xiao, Y.B.;Kim, E.H.;Kong, S.M.;Chung, C.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.233-233
    • /
    • 2010
  • Magnetic random access memory (MRAM), based on magnetic tunnel junction (MTJ) and CMOS, is a prominent candidate among prospective semiconductor memories because it can provide nonvolatility, fast access time, unlimited read/write endurance, low operating voltage and high storage density. The etching of MTJ stack with good properties is one of a key process for the realization of high density MRAM. In order to achieve high quality MTJ stack, the use of CoFeB and IrMn magnetic films as free layers was proposed. In this study, inductively coupled plasma reactive ion etching of CoFeB and IrMn thin films masked with Ti hard mask was investigated in a $Cl_2$/Ar gas mix. The etch rate of CoFeB and IrMn films were examined on varying $Cl_2$ gas concentration. As the $Cl_2$ gas increased, the etch rate monotonously decreased. The effective of etch parameters including coil rf power, dc-bais voltage, and gas pressure on the etch profile of CoFeB and IrMn thin film was explored, At high coil rf power, high dc-bais voltage, low gas pressure, the etching of CoFeB and IrMn displayed better etch profiles. Finally, the clean and vertical etch sidewall of CoFeB and IrMn free layers can be achieved by means of thin Ti hard mask in a $Cl_2$/Ar plasma at the optimized condition.

  • PDF

Disinfection of Escherichia coli and Bacillus subtilis using underwater plasma

  • Yu, Seung-Min;No, Tae-Hyeop;Seok, Dong-Chan;Yu, Seung-Ryeol;Hong, Yong-Cheol;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.47-47
    • /
    • 2010
  • Discharge under the water is very hard and demand considerable high voltage. But specially improved electrode can generate plasma discharge to salty water with relatively low voltage. A round shape ceramic electrode having many pinholes combined with metallic one can generate plasma. 400 volt, 10 kHz and 3 micro second pulse width were applied to repeatedly running synthetic seawater with 10 L/m velocity, containing cultivated E. coli and Bacillus. As a result, 18, 94, 99.97, 100, 100 % disinfection rates to E. coli and 17.1, 17.1, 82.9, 99.4, 99.9 % disinfection rates to Bacillus subtilis were achieved to 1, 2, 3, 4, 5 times repetitive treatment respectively. In the plasma condition, the ions and electrons are separated and new kinds of components are re-synthesized by the intensive movement of the components. Especially chlorine ions are separated and recombined to residual free chlorine like HOCl, $OCl^-$. The residual free chlorine concentrations of discharged water were 0.25, 0.88, 1.39, 1.59, 1.66 mg $Cl_2$/L after 5 times treatment respectively. Another unconfirmed radical and oxidants for example, OH, $H_2O_2$, and $O_3$ can have an effect on microorganism of course.

  • PDF

Excitonic transitions and dynamics in front and back surfaces of ZnO films grown by plasma-assisted molecular beam epitaxy

  • Lee, Seon-Gyun;Go, Hang-Ju;Yao, Takafumi;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.119-119
    • /
    • 2010
  • We report strong exciton transition and exciton-phonon couplings in photoluminescence (PL) of ZnO thin films grown on MgO/sapphire (buffer/substrate) by plasma-assisted molecular beam epitaxy. The PL spectra at 10 K showed the intensity of the dominant emission, donor-bound exciton transition of front surface (top surface, the latter part in growth) is found to be about 100 times higher than that of back surface (in-depth bottom area, the initial part), while the room temperature PL spectra showed dominant contributions from the free exciton emissions and phonon-replicas of free excitons for front surface and back surface, respectively, It could be attributed to the strong contributions of exciton-phonon coupling. Time resolved PL spectra reveal that the life time of exciton recombination from the front surface are longer than those from back surface. This is most probably due to the fact that reduction of non-radiative recombination in the front surface. This investigation indicates that the existence of native defects or trap centers which can be reduced by the proper initial condition in growth and the exciton-phonon interaction couplings play an important role in optical properties and crystal quality of ZnO thin films.

  • PDF

Study on the superhydrophilicity of $TiO_2$ films on glasses by thermal CVD

  • Choi, Jin-Woo;Cho, Sang-Jin;Nam, Sang-Hun;Kim, Young-Dok;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.100-100
    • /
    • 2010
  • Hydrophilic $TiO_2$ films were deposited on slide glasses using titanium tetraisopropoxide (TTIP) as a precursor by metal-organic chemical vapor deposition (MOCVD). The temperature of substrate was $400^{\circ}C$ and the temperatures of precursor were kept at $75^{\circ}C$ (sample A) and $60^{\circ}C$ (sample B) during the $TiO_2$ film growth. The deposited $TiO_2$ films were characterized by contact angle measurement and uv/vis spectroscopy. The result show that sample B has very low contact angle of almost zero due to superhydrophilic $TiO_2$ surface and transmittance is $76.85%{\pm}1.47%$ at the range of 400 - 700 nm. So, this condition is very optimal for hydrophilic $TiO_2$ film deposition. However, when the temperature of precursor is lower is lower than $50^{\circ}C$ or higher than $75^{\circ}C$, $TiO_2$ could not be deposited on the substrate and cloudy $TiO_2$ film was formed due to low precursor temperature and the increase of surface roughness, respectively.

  • PDF

Bendable Photoelectrodes by Blending of Polymers with $TiO_2$ For Low Temperature Dye-sensitized Solar Cells

  • Yu, Gi-Cheon;;Lee, Do-Gwon;Kim, Gyeong-Gon;Go, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.319-319
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) based on plastic substrates have attracted much attention mainly due to extensive applications such as ubiquitous powers, as well as the practical reasons such as light weight, flexibility and roll-to-roll process. However, conventional high temperature fabrication technology for glass based DSSCs, cannot be applied to flexible devices because polymer substrates cannot withstand the heat more than $150^{\circ}C$. Therefore, low temperature fabrication process, without using a polymer binder or thermal sintering, was required to fabricate necked $TiO_2$. In this presentation, we proposed polymer-inorganic composite photoelectrode, which can be fabricated at low temperature. The concept of composite electrode takes an advantage of utilizing elastic properties of polymers, such as good impact strength. As an elastic material, poly(methyl methacrylate) (PMMA) is selected because of its optical transparency and good adhesive properties. In this work, a polymer-inorganic composite electrode was constructed on FTO/glass substrate under low temperature sintering condition, from the mixture of PMMA and $TiO_2$ colloidal solution. The effect of PMMA composition on the photovoltaic property was investigated. Then, the enhanced mechanical stability of this composite electrode on ITO/PEN substrate was also demonstrated from bending test.

  • PDF