• Title/Summary/Keyword: Vacuum calculation

Search Result 158, Processing Time 0.03 seconds

Ray Effect Analysis Using the Discrete Elements Method in X-Y Geometry (2차원 직각좌표계에서 DEM을 이용한 ray effect의 해석)

  • Choi, Ho-Sin;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.1
    • /
    • pp.43-56
    • /
    • 1992
  • As one of the methods to ameliorate the ray effects which are the nature of anomalous computational effects due to the discretization of the angular variable in discrete ordinates approximations, a computational program, named TWODET (TWO dimensional Discrete Element Transport), has developed in 2 dimensional cartesian coordinates system using the discrete elements method, in which the discrete angle quadratures are steered by the spatially dependent angular fluxes. The results of the TWODET calculation with K-2, L-3 discrete angular quadratures, in the problem of a centrally located, isotropically emitting flat source in an absorbing square, are shown to be more accurate than that of the DOT 4.3 calculation with S-10 full symmetry angular quadratures, in remedy of the ray effect at the edge flux distributions of the square. But the computing time of the TWODET is about 4 times more than that of the DOT 4.3. In the problem of vacuum boundaries just outside of the source region in an absorbing square, the results of the TWODET calculation are shown severely anomalous ray effects, due to the sudden discontinuity between the source and the vacuum, like as the results of the DOT 4.3 calculation. In the probelm of an external source in an absorbing square in which a highly absorbing medium is added, the results of the TWODET calculation with K-3, L-4 show a good ones like as, somewhat more than, that of the DOT 4.3 calculation with S-10.

  • PDF

Gain-Coupled Distributed-Feedback Effects in GaAs/AlGaAs Quantum-Wire Arrays

  • Kim, Tae-Geun;Y. Tsuji;Mutsuo Ogura
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.52-55
    • /
    • 2003
  • GaAs/AlGaAs quantum-wire (QWR) gain-coupled distributed-feedback (GC-DFB) lasers are fabricated and characterized Constant metalorganic chemical vapor deposition (MOCVD) growth is used to avoid grating overgrowth during the fabrication of DFB structures. Numerical calculation shows large gain anisotropy by optical feedback along the DFB directions near Bragg wavelength. DFB lasing via QWR active gratings is also experimentally achieved.

Thermal Shroud Design of a Large Space Simulator(${\Phi}8m{\times}L10m$) (대형우주모사장비(${\Phi}8m{\times}L10m$) 열교환 슈라우드 설계)

  • Cho, Hyok-Jin;Moon, Guee-Won;Lee, Sang-Hoon;Seo, Hee-Jun;Winter, Calvin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1236-1240
    • /
    • 2004
  • Thermal vacuum test for satellites should be performed before launch to verify the feasibility of satellites' operation in a harsh space environment which is represented as an extremely cold temperature and vacuum condition. A large space simulator(${\Phi}8m{\times}L10m$) has been demanded to accomplish the thermal vacuum test for the huge satellites designed in compliance with the national space program of Korea. In this paper, the design and calculation of thermal shroud which is the core part of large space simulator were discussed. The characteristics of the large space simulator being constructed at Korea Aerospace Research Institute(KARI) were depicted.

  • PDF

Research and Analysis of Dynamic Behavior Permanent Magnetic Actuator applicable to 38kV Vacuum Circuit Breaker (36kV급 진공차단기에 적용 가능한 PMA(영구자석형 조작기) 연구 및 동작특성 해석)

  • Kang, Jong-Ho;Shin, Dong-Kyu;Bae, Chae-Yoon;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.18-20
    • /
    • 2004
  • This paper formulates the principle of the permanent magnetic actuator (PMA) and its dynamic characteristic calculation applicable to High Voltage Vacuum Interrupter (38kV/31.5kA). The new type of PMA is need to apply to High Voltage Vacuum Interrupter for large stroke length and contact force at interrupter. Consequently this paper describes the ideal matching of the new type of PMA mechanism with the characteristics required to operate successfully, reliably and efficiently a High Voltage Vacuum Interrupter.

  • PDF

Impedance Calculation for Vacuum Components in Pohang Light Source Storage Ring

  • Ju, Yeong-Do;Lee, Byeong-Jun;Son, Yeong-Uk;Yu, In-Ha;Jeon, Myeong-Hwan;Park, In-Su;Kim, Seung-Hwan;Ha, Tae-Gyun;Gong, Hyeong-Seop;Son, Yun-Gyu;Park, Yong-Jeong;Park, Jong-Do;Nam, Sang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.151.2-151.2
    • /
    • 2014
  • Broadband impedances for the 3-GeV pohang light source-II (PLS-II) storage ring have been numerically estimated using a full three dimensional finite-difference time-domain code, CST particle studio. The total broadband impedance of all the vacuum components was estimated as 0.256 ohm, which is a small fraction of the total machine impedance budget.

  • PDF

Development and Application of Distributed Multilayer On-line Monitoring System for High Voltage Vacuum Circuit Breaker

  • Mei, Fei;Mei, Jun;Zheng, Jianyong;Wang, Yiping
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.813-823
    • /
    • 2013
  • On-line monitoring system is important for high voltage vacuum circuit breakers (HVCBs) in operation condition assessment and fault diagnosis. A distributed multilayer system with client/server architecture is developed on rated voltage 10kV HVCB with spring operating mechanism. It can collect data when HVCB switches, calculate the necessary parameters, show the operation conditions and provide abundant information for fault diagnosis. Ensemble empirical mode decomposition (EEMD) is used to detect the singular point which is regarded as the contact moment. This method has been applied to on-line monitoring system successfully and its satisfactory effect has been proved through experiments. SVM and FCM are both effective methods for fault diagnosis. A combinative algorithm is designed to judge the faults of HVCB's operating mechanism. The system's precision and stability are confirmed by field tests.

Numerical Analysis on the Beat and Mass Transport in Horizontal MOCVD Reactor for the Growth of GaN Epitaxy (수평형 MOCVD에 의한 GaN 에피층 성장시 반응로내의 열 및 물질전달에 관한 수치해석 연구)

  • 신창용;윤정모;이철로;백병준
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.341-349
    • /
    • 2001
  • Numerical calculation has been performed to investigate the fluid flow, heat transfer and local mass fraction of chemical species in the MOCVD(metalorganic chemical vapor deposition) manufacturing process. The mixing of reactants (trimethylgallium with hydrogen gas and ammonia) was presented by the concentration of each reactant to predict the uniformity of film growth. Effects of inlet size, location, mass flow rate and susceptor/cold wall tilt angle on the concentration were reported. From the numerical calculation, the concentration of reactants could be qualitatively predicted by the Nusselt number(heat transfer) and the optimum mass flow rate, wall tilt angle and inlet condition were considered.

  • PDF

Interfacial Electronic Structure of Bathocuproine and Al: Theoretical Study and Photoemission Spectroscopy

  • Lee, Jeihyun;Kim, Hyein;Shin, Dongguen;Lee, Younjoo;Park, Soohyung;Yoo, Jisu;Jeong, Junkyeong;Hyun, Gyeongho;Jeong, Kwangho;Yi, Yeonjin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.169-169
    • /
    • 2014
  • Interfacial electronic structure of bathocuproine and Al was investigated using in-situ photoemission spectroscopy and density functional theory (DFT) calculations. Bathocuproine is used for exciton blocking and electron transport material in organic photovoltaics and Al is typical cathode material. When thin thickness of Al was thermally evaporated on BCP, gap states were observed by ultraviolet photoemission spectroscopy. The closest gap state yielded below 0.3 eV from Fermi level. By x-ray photoemission spectroscopy, interaction of Al with nitrogen of BCP was observed. To understand the origin of gap states, DFT calculation was carried out and gap states was verified with successive calculation of interaction of Al and nitrogen of BCP. Furthermore, emergency of another state above Fermi level was observed. Remarkable reduction of electron injection barrier between Al and BCP, therefore, is possible.

  • PDF