• Title/Summary/Keyword: Vacuum Specific Impulse

Search Result 13, Processing Time 0.016 seconds

Thrust Performances of a Very Low-Power Micro-Arcjet

  • Hotaka Ashiya;Tsuyoshi Noda;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.611-616
    • /
    • 2004
  • In this study, microfabrication of a micro-arcjet nozzle with Fifth-harmonic generation Nd:YAG pulses (wavelength 213 nm) and its thrust performance tests were conducted. A micro-arcjet nozzle was machined in a 1.2 mm thick quartz plate. Sizes of the nozzle were 0.44 mm in width of the nozzle exit and constrictor diameter of 0.1 mm. For an anode, a thin film of Au (~100 nm thick) was deposited by DC discharge PVD in vacuum on divergent part of the nozzle. As for a cathode, an Au film was also coated on inner wall surface. In operational tests, a stable discharge was observed for mass flow of 1.0mg/sec, discharge current of 6 ㎃, discharge voltage of 600 V, or 3.6 W input power (specific power of 3.6 MW/kg). In this case, plenum pressure of the discharge chamber was 80 ㎪. With 3.6 W input power, thrust obtained was 1.4 mN giving specific impulse of 138 sec with thrust efficiency of 24 %.

  • PDF

Deep Space Maneuver by Microwave Discharge Ion Engines onboard "HAYABUSA" Asteroid Explorer

  • Kuninaka, Hitoshi;Nishiyama, Kazutaka;Shimizu, Yukio;Toki, Kyoichiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.306-313
    • /
    • 2004
  • The microwave discharge ion engine generates plasmas of both the main ion source and the neutralizer using 4㎓ microwave without discharge electrodes and hollow cathodes, so that long life and durability against oxygen and air are expected. The MUSES-C “HAYABUSA” asteroid explorer installing four microwave discharge ion engines “$\mu$10s” was launched into deep space by M-V rocket No.5 on May 9, 2003. After vacuum exposure and several runs of baking for reduction of residual gas the ion engine system established the continuous acceleration of the spacecraft toward the asteroid “ITOKAWA”. The Doppler shift measurement of the communication microwave revealed the performance of ion engines, which is 8mN thrust force for a single unit with 3,200sec specific impulse at 23mN/㎾ thrust power ratio. At the end of 2003 the accumulated operational time exceeded 8,000 hour and unit. HAYABUSA will execute the Earth swing-by on June 2004 and arrive at the asteroid in 2005 and return to Earth in 2007.

  • PDF

Development of a 700 W Class Laboratory Model Hall Thruster (700 W급 홀 전기추력기 랩모델 연구개발)

  • Doh, Guentae;Kim, Youngho;Lee, Dongho;Park, Jaehong;Choe, Wonho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.65-72
    • /
    • 2021
  • 700 W class laboratory model Hall thruster, which can be used for the orbit control or station keeping of small satellites, was developed. The size of the discharge channel was determined using a scaling law, and the magnetic field was designed to be symmetric with respect to the midline of the discharge channel and to be maximized outside the discharge channel. Base pressure of a vacuum chamber was maintained below 2.0×10-5 Torr during experiments, and the thrust was measured by a thrust stand. The anode flow rate and coil current were varied with the fixed anode voltage at 300 V. Under the operation condition at 2.36 mg/s anode flow rate and 2.4 A coil current, performance was optimized as 38 mN thrust, 1,540 s total specific impulse, and 50 % anode efficiency at 620 W anode power.