• Title/Summary/Keyword: Vacuum Slurry Coating

Search Result 6, Processing Time 0.022 seconds

Fabrication Of Thin Electrolyte Layer For Solid Oxide Fuel Cell by Vacuum Slurry Dip-coating Process (진공 슬러리 담금 코팅 공정에 의한 고체 산화물 연료전지용 박막 전해질막 제조에 관한 연구)

  • Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Shin, Dong-Tyul;Song, Rak-Hyun;Kim, Sung-Hyun
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.204-211
    • /
    • 2006
  • The electrolyte in the solid oxide fuel cell must be dense enough to avoid gas leakage and thin enough to reduce the ohmic resistance. In order to manufacture the thin and dense electrolyte layer, 8 mol% $Y_2O_3$ stabilized-$ZrO_2$ (8YSZ) electrolyte layers were coated on the porous tubular substrate by the novel vacuum slurry dip-coating process. The effects of the slurry concentration, presintering temperature, and vacuum pressure on the thickness and the gas permeability of the coated electrolyte layers have been examined in the vacuum slurry coating process. The vacuum-coated electrolyte layers showed very low gas permeabilities and had thin thicknesses. The single cell with the vacuum-coated electrolyte layer indicated a good performance of $495\;mW/cm^2$, 0.7 V at $700^{\circ}C$. The experimental results show that the vacuum dip-coating process is an effective method to fabricate dense thin film on the porous tubular substrate.

Effect on protective coating of vacuum brazed CMP pad conditioner using in Cu-slurry (Cu 용 슬러리 환경에서의 보호성 코팅이 융착 CMP 패드 컨니셔너에 미치는 영향)

  • Song M.S.;Gee W.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.434-437
    • /
    • 2005
  • Chemical Mechanical Polishing (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. In general, CMP is a surface planarization method in which a silicon wafer is rotated against a polishing pad in the presence of slurry under pressure. The polishing pad, generally a polyurethane-based material, consists of polymeric foam cell walls, which aid in removal of the reaction products at the wafer interface. It has been found that the material removal rate of any polishing pad decreases due to the so-called 'pad glazing' after several wafer lots have been processed. Therefore, the pad restoration and conditioning has become essential in CMP processes to keep the urethane polishing pad at the proper friction coefficient and to allow effective slurry transport to the wafer surface. Diamond pad conditioner employs a single layer of brazed bonded diamond crystals. Due to the corrosive nature of the polishing slurry required in low pH metal CMP such as copper, it is essential to minimize the possibility of chemical interaction between very low pH slurry (pH <2) and the bond alloy. In this paper, we report an exceptional protective coated conditioner for in-situ pad conditioning in low pH Cu CMP process. The protective Cr-coated conditioner has been tested in slurry with pH levels as low as 1.5 without bond degradation.

  • PDF

Fabrication of Electrolyte for Direct Carbon Fuel Cell and Evaluation of Properties of Direct Carbon Fuel Cell (직접탄소 연료전지용 전해질 제조 및 직접탄소 연료전지 특성 평가)

  • Pi, Seuk-Hoon;Cho, Min-Je;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.786-789
    • /
    • 2011
  • In order to estimate the possibility of applying electrolytes generally used in solid oxide fuel cells(SOFCs) to direct carbon fuel cells(DCFCs), properties of YSZ(yttria stabilized zirconia) electrolyte were evaluated. In this study, vacuum slurry coating method was adapted to coat thin layer on anode support substrate. After sintering the electrolyte at $1400^{\circ}C$ for 5hrs, microstructure was analyzed by using SEM image. Also, gas permeability and ionic conductivity were measured to find out the potential possibility of electrolyte for DCFCs. The YSZ electrolyte represented dense coating layer and low gas permeability value. The ionic conductivity of YSZ electrolyte was high over $800^{\circ}C$. After measurement of the electrolyte properties, direct carbon fuel cell was fabricated and its performance was measured at $800^{\circ}C$.

Effects of Melting and Rolling Condition of Ti-10wt.%Ta-10wt.%Nb Alloy on Microstructure Variation (용해 및 가공조건 변화가 Ti-10wt.%Ta-10wt.%Nb합금의 미세조직에 미치는 영향)

  • Lee, Doh-Jae;Lee, Kwang-Min;Kim, Min-Ki;Lee, Kyung-Ku
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.114-120
    • /
    • 2002
  • A new titanium based alloy, Ti-10Ta-10Nb, has designed to examine the improved mechanical properties and biocompatibility. A specimen of titanium alloy was melted in a consumable vacuum arc furnace and homogenized at $1050^{\circ}C$ for 24 h. The effect of hot rolling on microstructure was estimated after rolling at $400^{\circ}C$ and $800^{\circ}C$ respectively. Surface of melted alloy by consumable vacuum arc melting was consisted of rough surface and it was changed to sound surface by coating of $ZrO_2$ slurry on copper mold surface. The hardness of Ti-10Ta-10Nb alloy increased with the amount of${\alpha}+{\beta}$ phase. Ti-10Ta-10Nb alloy showed $Widmanst{\"{a}}ten$ structure by hot rolling at $800^{\circ}C$ and in the rolling ${\beta}-region$ was negligible effects on microstructure refining.

Development of Slurry Flow Control and Slot Die Optimization Process for Manufacturing Improved Electrodes in Production of Lithium-ion Battery for Electric Vehicles (전기자동차 리튬이온 배터리 제조공정에서 Loading Level 산포최소화 코팅을 통한 전극 품질개선에 관한 연구)

  • Jang, Chan-Hee;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.14-20
    • /
    • 2018
  • Electric vehicles are environmentally friendly because they emit no exhaust gas, unlike gasoline automobiles. However, since they are driven by the electric power from batteries, the distance they can travel based on a single charge depends on their energy density. Therefore, the lithium-ion battery having a high energy density is a good candidate for the batteries of electric vehicles. Since the electrode is an essential component that governs their efficiency, the electrode manufacturing process plays a vital role in the entire production process of lithium-ion batteries. In particular, the coating process is a critical step in the manufacturing of the electrode, which has a significant influence on its performance. In this paper, we propose an innovative process for improving the efficiency and productivity of the coating process in electrode manufacturing and describe the equipment design method and development results. Specifically, we propose a design procedure and development method in order to improve the core plate coating quality by 25%, using a technology capable of reducing the assembly margin due to its high output/high capacity and improving the product capacity quality and assembly process yield. Using this method, the battery life of the lithium-ion battery cell was improved. Compared with the existing coating process, the target loading level is maintained and dispersed to maintain the anode capacity (${\pm}0.4{\rightarrow}{\pm}0.3mg/cm^2r$ reduction).

Development of Investment Casting Technique using R/P Master Model (R/P 마스터모델을 활용한 정밀주조 공정기술의 개발)

  • Im, Yong-Gwan;Chung, Sung-Il;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.52-57
    • /
    • 1999
  • Funtional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported by song etc. But a system which can build directly 3D parts of high performance functional material as metal part would need long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we tranlsated the wax patterns to numerous metal prototypes by new investment casting process combined conventional investment casting with rapid pototyping & rapid tooling process. with this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P part to metal part.

  • PDF