• Title/Summary/Keyword: Vacuum Sintering

Search Result 203, Processing Time 0.026 seconds

The Effect of Sintering Parameters on the Densification Behavior of PM High Speed Steel (분말 고속도공구강의 소결 조건에 따른 치밀화 거동연구)

  • 김용진
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.190-197
    • /
    • 1994
  • The densification behavior during a sintering of M2 and T15 grade high speed steel powder compacts was reported. Sintered densities over 98% theoretical were achieved by a liquid phase sintering in vacuum for both grades. The optimum sintering temperature range where full densification could be achieved without excessive carbide coarsening and incipient melting was much narrower in M2 than in T15 grade. The sintering response was mainly affected by the type of carbides present. The primary carbides in M2 were identified as $M_6C$ type whereas those in T15 were MC type which provides wider sintering range. The addition of elemental carbon up to 0.3% lowered the optimum sintering temperature for both grades, but had little effect on expanding the sintering range and sintered structure.

  • PDF

Effect of Sintering Atmosphere and Carbon Addition on Sintered Density of M3/2 Grade High Speed Steel Powder (M3/2계 고속도 공구강 분말의 소결분위기와 탄소첨가가 소결밀도에 미치는 영향)

  • Ahn, Jin-Hwan;Heo, Jong-Seo;Joo, Dong-Won;Jung, Eun;Sung, Jang-Hyun
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.265-272
    • /
    • 1998
  • For the purpose of investigating the effect of sintering atmosphere and carbon addition on sintered density and microstructural characteristics, the M3/2 grade high speed steel powders with the addition of carbon are sintered in vacuum and $20%H_2/79%N_2/l%CH_4$ gas atmosphere. With the addition of 0 wt%C, 0.45wt%C and 1.15 wt%C the optimum sintering temperatures decrease down to $1260^{\circ}C$, $1210^{\circ}C$ and $1150^{\circ}C$ respectively for the vacuum sintered specimen, and also decrease down to $1130^{\circ}C$, $1120^{\circ}C$ and $1115^{\circ}C$ for the gas sintered specimen. The threshold temperatures for full densification decrease steeply with increasing carbon content of the sintered specimen, while this temperatures are slowly decreased at high carbon content. The vacuum sintered specimen shows the primary carbides of MC and $M_6C$ type at the optimum sintering temperature, and eutectic carbides of $M_2C$ and Fe-Cr type are produced in the oversintered specimen. The gas sintered specimen exhibits M6C and Fe-Cr type primary carbides at the optimum sintering temperature. The eutectic carbides of $M_6C$ and Fe-Cr type and MX type carbonitride are shown for the oversintered specimen in the gas atmosphere. The hardness of gas sintered specimen shows high value of 830-860 Hv due to the increment of carbide precipitation.

  • PDF

Development of Precision Casting Technology for Inlet Gear Box using Selective Laser Sintering (선택적 레이저 소결법을 이용한 기어박스의 정밀주조기술개발)

  • 김천기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.30-37
    • /
    • 2000
  • In this paper rapid prototyping and precision casting technology have been developed for the manufacturing of inlet gear box of an airplane, Rapid prototyping is a new prototyping technology that produces complicated parts directly from three-dimensional CAD data with a high efficiency and has been extensively applied to various manufacturing processes. In the present work Selective Lase Sintering(SLS) system is utilized in order to manufacture prototype of the inlet gear box. Prototyping technology using SLS is also investigated from the viewpoint of accuracy. Using the SLS master the casting products are manufactured through several processes such as : vacuum casting lost wax shell casting and investment cast-ing. The shrinkage characteristics of wax and cast iron in the casting procedures are considered and then reflected to the design procedure so that the accuracy of the product is improved consequently.

  • PDF

Facile Fabrication of $TiO_2$ Photoelectrodes Using Intense Pulsed Light for Dye-Sensitized Solar Cells

  • Jin, Hwa-Yeong;Yu, Gi-Cheon;Lee, Jin-A;Im, Jeong-A;Kim, Ji-Hyeon;Go, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.228-228
    • /
    • 2013
  • Dye-Sensitized Solar Cells (DSSCs) have attracted great interests as they offer high energyconversion efficiencies at low cost. For the conventional fabrication of DSSCs, high temperature sintering is required for the construction of interconnect $TiO_2$. However, more simplified process which can be applicable to large-sized solar cells module, is strongly necessary for the commercialization of DSSCs. In this work, we developed novel sintering method using Intense Pulsed Light (IPL), which can replace the conventional high temperature sintering methods. The photovoltaic properties of DSSCs utilizing IPL methods will be reported.

  • PDF

A Study on Bubbling Control of Bi-2223/Ag HTS tapes (Bi-2223/Ag 고온초전도 선재의 bubbling 제어에 관한 연구)

  • 하홍수;오상수;하동우;송규정;김상철;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.145-148
    • /
    • 2001
  • Bi-2223/Ag HTS tapes fabricated by PIT process are used to make the power transmission cable, motor, fault current limiter, transformer etc. But some problems are still remained as like bubbling, sausaging to got the high Jc. In this study. we carried out the experiment to prevent bubbling in the HTS tape. The bubbling mainly occurred when HTS tape was heat-treating. Therefore, additional vacuum annealing at 400 ~ $600^{\circ}C$and slowly ramp-up sintering method were used to decrease the bubbling. slowly ramp-up sintering was more effective to decrease the bubbling than the vacuum annealing, but Jc was also decreased after heat treatment. Optimum ramp-up sintering schedule was searched to get the high critical current and prevent bubbling at same time.

  • PDF

A study of loading property of the bioactive materials in porous Ti implants (다공성 티타늄 임플란트의 생리활성물질 담지특성에 관한 연구)

  • Kim, Yung-Hoon
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.281-286
    • /
    • 2013
  • Purpose: Surface modification is important techniques in modern dental and orthopedic implants. This study was performed to try embedding of bioactive materials in porous Ti implants. Methods: Porous Ti implant samples were fabricated by sintering of spherical Ti powders in a high vacuum furnace. It's diameter and height were 4mm and 20mm. Embedding process was used to suction and vacuum chamber. Loading properties of porous Ti implants were evaluated by scanning electron microscope(SEM), confocal laser scanning microscope(CLSM), and UV-Vis-NIR spectrophotometer. Results: Internal pore structure was formed fully open pore. Average pore size and porosity were $10.253{\mu}m$ and 17.506%. Conclusion: Porous Ti implant was fabricated successfully by sintering method. Particles are necking strongly each other and others portions were vacancy. This porous structure can be embedded to bioactive materials. Therefore bioactive materials will be able to embedding to porous Ti implants. Bioactive materials embedding in the porous Ti implant will induced new bone faster.

Establishment of Laser Sintering Technique for Titanium Powder

  • Miura, Hideshi;Takemasu, Teruie;Uemura, Makoto;Otsu, Masaaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.244-245
    • /
    • 2006
  • This paper investigates the characteristic of single-layered and multi-layered compacts made by selective laser sintering using titanium powder (TILOP45 and TILOP150, Sumitomo Titanium Corp.) There were few defects in smooth surface of laser sintered specimen in vacuum as compared to the laser sintered specimen in argon. Maximum tensile strength of singlelayered compact was about 200MPa. Multi-layered compacts show the density of around 75% and the adhesive bonding was not observed between layers, resulted in 70MPa of maximum bending strength and 50MPa of maximum tensile strength.

  • PDF

Mechanical property of porous Ti implants by sintering method (소결방법에 따른 다공성 티타늄 임플란트의 기계적 특성)

  • Kim, Yung-Hoon
    • Journal of Technologic Dentistry
    • /
    • v.34 no.3
    • /
    • pp.221-226
    • /
    • 2012
  • Purpose: This study was performed to compare mechanical properties for sintering methods of porous Ti implants. Methods: The specimens of Ti implant were fabricated by several sintering methods. One of them is spark plasma sintering(SPS). Another is electro discharge singering(EDS) and the other is high vacuum sintering(HVS). Mechanical properties of porous Ti implants were evaluated by universal testing machine(UTM) and their fracture surface was examined under a sanning electron microscope(SEM). Results: The tensile strength was in a range of 71 to 230 MPa, and Young's modulus was in a range of 11 to 21 Gpa. It matched with range of cortical bone. Conclusion: Mechanical properties of porous Ti implants were similar to human bone. It was shown that sintering methods of spherical powders can efficiently produce porous Ti implants with various porosities. Porous metals will be commonly used in orthopedic and dental application despite of initial focus has been on bioceramics.

A Study on the Selection of Stainless Steel for Automotive Inside Mirror Joint by Vacuum Sintering (진공소결을 통한 자동차용 인사이드 미러 접합부의 스테인레스강 선정에 관한 연구)

  • Sung, Si-Myung;Jung, In-Ryung
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.36-40
    • /
    • 2018
  • The car requires an inside mirror installed between the driver's seat and the passenger's seat to ensure the driver's rear and side view of the driver. Inside mirrors must always be attached to the vehicle to ensure the driver's visibility. Inside mirrors attached to the windshield of a vehicle are always exposed to direct sunlight and should be semi-permanently usable in hot and humid summer weather in Korea. Therefore, the mirror mount, which is the junction of the inside mirror, is particularly important in corrosion resistance and wear resistance suitable for humidity. Mirror mounts are currently difficult to manufacture due to their reliance on powder molding technology in advanced countries such as Japan and Germany. This paper focuses on the fabrication of high corrosion resistant stainless mirror mounts by vacuum sintering technique and focuses on the selection of materials suitable for the production of mirror mounts through experiments of 300 series stainless steel and 400 series stainless steel manufactured by vacuum sintering.

Fabrication Methods of Porous Ceramics and Their Applications in Advanced Engineering - Large Flat Precision Plate for Flat Display Industries

  • Matsumaru, Koji;Ishizaki, Kozo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.3.1-3.1
    • /
    • 2009
  • Normal sintering process of producing porous ceramics is not to sinter perfectly, i.e., stop sintering in middle-process. Our porous ceramic materials are a product of complete sintering. For example if one want to make a porous carborundum, raw carborundum powder is sintered at either lower temperatures than normal sintering temperature or shorter sintering periods than normal sintering time to obtain incompletely sintered materials, i.e., porous carborundum. This implies normally sintered porous ceramic materials can mot be used in high vacuum conditions due to dust coming out from uncompleted sintering. We could produce completely sintered porous ceramic materials. For example, we can produce porous carborundum material by using carborundum particles bonded by glassy material. The properties of this material are similar to carborundum. We could make quasi-zero thermal expansion porous material by using carborundum and particles of negative thermal expansion materials bonded by the glassy material. We apply to sinter them also by microwave to sinter quickly. We also use HIP process to introduce closed pores. We could sinter them in large size to produce $2.5m{\times}2.5m$ ceramic plate to use as a precision plate for flat display industries. This flat ceramic plate is the world largest artificial ceramic plate. Precision plates are basic importance to any advanced electronic industries. The produced precision plate has lower density, lower thermal expansivity, higher or similar damping properties added extra properties such as vacuum vise, air sliding capacity. These plates are highly recommended to use in flat display industries. We could produce also cylindrical porous ceramics materials, which can applied to precision roller for polymer film precision motion for also electronic industries.

  • PDF