• Title/Summary/Keyword: Vacuum Glass

Search Result 758, Processing Time 0.027 seconds

Determination on the Optimal Sealing Conditions of the Vacuum Glass Edge Parts using Design of Experiments Technique (실험계획법에 의한 진공유리의 모서리부 최적 접합공정조건 결정)

  • Lee, Jong-Gon;Jeon, Euy-Sik;Kim, Young-Shin;Park, Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2012
  • The glass edge sealing is one of the vacuum glazing core manufacturing process and it needs the high reliability for the vacuum keeping. Conventionally, the glass edge sealing had been being researched by the method that pasted the flit on the glass edge part and bonded two sheets of glass. But this way has the defect that can't make tempered glass. In order to remedy it's faults, in this paper, the glass edge was sealed by using the hydrogen mixture gas torch within the furnace. The parameter having an effect on the glass edge sealing through the basic test was set. And the correlation of the thickness of the glass edge and parameter were analyzed through the design of experiment. By using the Taguchi method, the optimal process condition for the glass edge sealing was drawn and the validity was verified.

Effects of Chemical Etching with Sulfuric Acid on Glass Surface

  • Jang, H.K.;Chung, Y.L.;S.W.Whangbo;C.N.Whang;Lee, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.165-165
    • /
    • 2000
  • Glass slides were chemically etched with sulfuric acid using five different methods. we investigated the effects of the chemical etching conditions on such properties as chemical composition, surface roughness, and the thermal stability of the glass. Sodium and carbon atoms in the surface of the glass are effectively eliminated by chemical etching with sulfuric acid. The glass slides were boiled for 30 min in 95% sulfuric acid and were depth profiled at room temperature with X-ray photoelectron spectroscopy (XPS), the Na ls signal was not detected in the detection limit of XPS. Surface morphology of the glass was very different depending on the concentration of sulfuric acid. The surface of the glass etched with 50% sulfuric acid was rougher than that of glass etched with 95% sulfuric acid. The sodium concentration of the glass boiled for 30 min in 95% sulfuric acid was nearly zero at the glass surface, and the sodium composition changed very little with annealing temperatures up to 35$0^{\circ}C$ in a vacuum environment. However the sulfur concentration at the glass surface due to the sulfuric acid increased with increasing temperature.

  • PDF

A Study on Optimization of Vacuum Glazing Encapsulating Process using Frit inside a Vacuum Chamber (진공챔버 내 프리트 이용 진공유리 봉지공정 최적화에 관한 연구)

  • Park, Sang Jun;Lee, Young Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.567-572
    • /
    • 2013
  • In houses that use heating and cooling system, most of heat loss occurs through the windows, so that low-E glass, double-layered glass, and vacuum glazing are used to minimize the heat loss. In this paper, an encapsulating process that is a final process in manufacturing the vacuum glazing has been studied, and bonding in a vacuum chamber rather than atmospheric bonding was considered. For the efficiency of the encapsulating process, frit-melting temperature and bonding time were optimized with heater temperature, and the glass preheating temperature was optimized to prevent glass breakage due to thermal stress. Thus the vacuum glass was successfully manufactured based on these results and heat transmission coefficient measured was about $5.7W/m^2K$ which indicates that the internal pressure of the vacuum glazing is $10^{-2}$ torr.

Experimental Study on Manufacturing of Insulation Vacuum Glazing and Measurement of the Thermal Conductance (단열 진공유리의 제작 및 열전달계수 측정에 관한 실험적 연구)

  • Lee Bo-Hwa;Yoon Il-Seob;Kwak Ho-Sang;Song Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.772-779
    • /
    • 2006
  • Window is a critical component in the design of energy-efficient buildings. To minimize the heat loss, insulation performance of the glazing has to be improved. Manufacturing of vacuum glazing has been motivated by the possibility of making windows of very good thermal insulation properties for such applications. It is made by maintaining vacuum in the gap between two glass panes. Pillars are placed between them to withstand the atmospheric pressure. Edge covers are applied to reduce conduction through the edge. Accurate measurements have been made of the radiative heat transfer, the pillar conduction and the gas conduction using a guarded hot plate apparatus. Vacuum glazing is found to have low thermal conductance roughly below $1W/m^2K$. Among the heat transfer modes of residual gas conduction, conduction through support pillar and the radiative heat transfer between the glass panes, the last one is the most dominant to the overall thermal conductance. Vacuum glazing using very low emittance AI-coated glass has an overall thermal conductance of about $0.7W/m^2K$.

Effect of Vacuum in a Non-glass Vacuum Tube on the thermal behavior of the Absorber Plate (비유리식(nonglass) 진공관의 진공도가 집열판의 열적 특성에 미치는 영향)

  • Oh, Seung-Jin;Hyun, Jun-Ho;Kim, Nam-Jin;Lee, Yoon-Joon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.67-73
    • /
    • 2008
  • This study has been carried out to investigate the effect of vacuum on the thermal performance of a nonglass evacuated tube. A series of measurements are made indoors to monitor the temperature change of the absorber plate contained in the evacuated tube under different conditions of vacuum and heat fluxes. Those temperatures measured at the thermal equilibrium could be used to assess the heat losses to the ambient in link with the steady operation of non-glass evacuated tubes for solar exploitation.

Development of Tubeless-Packaged Field Emission Display (Tubeless Packaging된 Field Emission Display의 개발)

  • Ju, Byeong-Gwon;Lee, Deok-Jung;Lee, Yun-Hui;O, Myeong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.275-280
    • /
    • 1999
  • The glass-to-glass electrostatic bonding process in vacuum environment was developed and the tubeless-packaged FED was fabricated based on the bonding process. The fabricated tubeless-packaged FED showed stable field emission characteristics and potential applicability to the FED tubeless packaging and vacuum in-line sealing.

  • PDF

Effect On Glass Texturing For Enhancement of Light Trapping in Perovskite Solar Cells

  • Kim, Dong In;Nam, Sang-Hun;Hwang, Ki-Hwan;Lee, Yong-Min;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.387.2-387.2
    • /
    • 2016
  • Glass texturing is a sufficient method for changing the surface morphology to enhance the light trapping. In this study, glass texturing was applied to the perovskite solar cell for improving the current density. Glass substrates (back-side glass of FTO coated glass substrate) were textured by randomly structure assisted wet etching process using diluted HF solution at a constant concentration of etchants (HF:H2O=1:1). Then, the light trapping properties of suitable films were controlled over a wide range by varying the etching time (1, 2, 3, 4 and 5 min.). The surface texturing changed the reflected light in an angle that it can be reflected by substrate glass surface. As a result, Current density and cell efficiency were affected by light trapping layer using glass texturing method in perovskite solar cells.

  • PDF

Development of spacer technology using glass to glass anodic bonding for FED (유리-유리 정전접합을 이용한 FED스페이서 기술 개발)

  • 김민수;박세광;문권진;김관수;우광제;정성재;이남양
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.465-469
    • /
    • 1999
  • In this paper, spacer process for FED (Field Emission Display ) was developed with the glass to glass anodic bonding technology using Al film as an interlayer. Characteristics, current density-time curves and force of the anodic boding were measured on various thickness of Al film; 1000$\AA$, 2000$\AA$, 3000$\AA$, 4000$\AA$ and 500$\AA$. Holders for spacer were fabricated with photosensitive glass and (110) Si wafer by bulk micromachining. Spacers was formed on glass substrate by spacer glass to glass anodic bonding and an evacuated panel was fabricated to prove the potential of application for FED.

  • PDF