• Title/Summary/Keyword: Vaccines

Search Result 820, Processing Time 0.03 seconds

Anti-SARS-CoV-2 receptor binding domain antibodies after the second dose of Sinovac and AstraZeneca vaccination

  • Marisca Evalina Gondokesumo;Anita Purnamayanti;Puri Safitri Hanum;Winnie Nirmala Santosa;Ardyan Prima Wardhana;Christina Avanti
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.3
    • /
    • pp.224-231
    • /
    • 2023
  • Purpose: The Sinovac and AstraZeneca vaccines are the primary coronavirus disease 2019 vaccines in Indonesia. Antibody levels in vaccine-injected individuals will decline substantially over time, but data supporting the duration of such responses are limited. Therefore, this study aims to quantitatively evaluate antibody responses resulting from the completion of Sinovac and AstraZeneca administration in Indonesian adults. Materials and Methods: Participants were divided into two groups based on their vaccine type. Both groups were then assessed on the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (anti-SRBD) concentrations. The anti-SRBD level was measured using Elecsys anti-SARS-CoV-2 S assay and analyzed every month until 3 months after the second vaccination. Results: The results presented significant differences (p=0.000) in immunoglobulin G (IgG) titers among the vaccines' measurement duration, where all samples observed a decrease in IgG titers over time. The mean titer levels of anti-SRBD IgG in the group given Sinovac were high in the first month after vaccination and decreased by 55.7% in 3 months. AstraZeneca showed lesser immune response with a slower decline rate. Adverse effects following immunization (AEFI) showed that systemic reactions are the most reported in both vaccines, with a higher percentage in the second dose of AstraZeneca type vaccines. Conclusion: Sinovac induced more significant titers of anti-SRBD IgG 1 month after the second dose but generated fewer AEFIs. In contrast, AstraZeneca generated more AEFIs, in mild to moderate severity, but provided lower levels of anti-SRBD IgG.

Adjuvanticity of Processed Aloe vera gel for Influenza Vaccination in Mice

  • Eun-Jung Song;Erica Espano;Jeong-Hyun Nam;Jiyeon Kim;Kyu-Suk Shim;Eunju Shin;Young In Park;Chong-Kil Lee;Jeong-Ki Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.4
    • /
    • pp.31.1-31.14
    • /
    • 2020
  • The effectiveness of current influenza vaccines is considered suboptimal, and 1 way to improve the vaccines is using adjuvants. However, the current pool of adjuvants used in influenza vaccination is limited due to safety concerns. Aloe vera, or aloe, has been shown to have immunomodulatory functions and to be safe for oral intake. In this study, we explored the potential of orally administered processed Aloe vera gel (PAG) as an adjuvant for influenza vaccines in C57BL/6 mice. We first evaluated its adjuvanticity with a split-type pandemic H1N1 (pH1N1) Ag by subjecting the mice to lethal homologous influenza challenge. Oral PAG administration with the pH1N1 Ag increased survival rates in mice to levels similar to those of alum and MF59, which are currently used as adjuvants in influenza vaccine formulations. Similarly, oral PAG administration improved the survival of mice immunized with a commercial trivalent influenza vaccine against lethal homologous and heterologous virus challenge. PAG also increased hemagglutination inhibition and virus neutralization Ab titers against homologous and heterologous influenza strains following immunization with the split-type pH1N1 Ag or the commercial trivalent vaccine. Therefore, this study demonstrates that PAG may potentially be used as an adjuvant for influenza vaccines.

Impact of vitamin D supplementation as COVID-19 vaccine adjuvant on sperm parameters and sex hormones in men with idiopathic infertility: Two separate pre-post studies

  • Mahtab Zarepoor;Alireza Nazari;Soheila Pourmasumi
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.2
    • /
    • pp.125-134
    • /
    • 2024
  • Objective: Vitamin D deficiency is a major problem for human health worldwide. The mechanisms of vitamin D in the male reproductive system are unknown. After coronavirus disease 2019 (COVID-19) vaccines were developed, doubts were raised about their possible effects on male fertility. Based on vitamin D's function in the immune system, its potential role as an adjuvant for COVID-19 vaccines is intriguing. The aims of this study were to assess the effects of vitamin D first on sperm parameters and sex hormones, and then as an immune adjuvant on sperm parameters and sex hormones after study participants had received their second doses of COVID-19 vaccines. Methods: Phase 1 (before the COVID-19 pandemic) included 72 men with idiopathic infertility, and phase 2 had 64 participants who received two doses of COVID-19 vaccines. Both groups were instructed to take 50,000 IU of vitamin D twice monthly for 3 months. Sperm parameters and sex hormones were assessed pre-and post-supplementation. Results: Regular vitamin D intake for 3 months significantly increased the participants' vitamin D levels (p=0.0001). Both phases showed a positive correlation between vitamin D intake and sperm parameters. Vaccination had no negative effects on sperm parameters and sex hormones. Vitamin D was associated with follicle-stimulating hormone (p=0.02) and testosterone (p=0.0001) in phase 2 after treatment. Conclusion: Our results support vitamin D supplementation as an immune adjunct to COVID-19 vaccination for improving sperm parameters and hormone levels. COVID-19 vaccination is not harmful for male fertility potential, and vitamin D is an effective factor for male fertility.

Efficacy, immunogenicity, and safety of COVID-19 vaccines in individuals with liver cirrhosis: a rapid review and meta-analysis

  • Faranak Salajegheh;Mohammad Rezaei Zadeh Rukerd;Mohsen Nakhaie;Zohreh-Al-Sadat Ghoreshi;Javad Charostad;Nasir Arefinia
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • The emergence of coronavirus disease 2019 (COVID-19) vaccines has been a remarkable advancement. However, the efficacy, immunogenicity, and safety of these vaccines in individuals with liver cirrhosis require careful evaluation due to their compromised immune status and potential interactions with underlying liver disease. The present study aimed to evaluate the safety and efficacy of COVID-19 vaccines in liver cirrhosis patients. In the present study, we searched international databases, including Google Scholar, PubMed, Scopus, Embase, and Web of Science. The search strategy was carried out by using keywords and MeSH (Medical Subject Headings) terms. STATA ver. 15.0 (Stata Corp., USA) was used to analyze the data statistically. The analysis was performed using the randomeffects model. We also used the chi-square test and I2 index to calculate heterogeneity among studies. For evaluating publication bias, Begg's funnel plots and Egger's tests were used. A total of 4,831 liver cirrhosis patients with COVID-19 were examined from 11 studies. The rate of hospitalization in the patients with liver cirrhosis was 17.6% (95% confidence interval [CI], 9%-44%). The rate of fever in the patients with liver cirrhosis was 4.5% (95% CI, 0.9%-8.1%). The rate of positive neutralizing antibodies in the patients with liver cirrhosis was 82.5% (95% CI, 69.8%-95.1%). Also, the rates of seroconversion after the second vaccination in patients with liver cirrhosis and the control group were 96.6% (95% CI, 92.0%-99.0%), and 99.7% (95% CI, 99.0%-100.0%), respectively. COVID-19 vaccines have demonstrated promising efficacy, immunogenicity, and safety profiles in individuals with liver cirrhosis, providing crucial protection against COVID-19-related complications.

Effectiveness of BBV152 vaccine and ChAdOx1-S vaccine in preventing severe disease among vaccinated patients admitted to a designated COVID-19 hospital in India

  • Rajaraman Nivetha;Ramesh Anshul;Subbarayan Sarojini;Chinnaian Sivagurunathan;Chandrasekar Janaganbose Maikandaan
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2024
  • Purpose: Coronavirus disease 2019 (COVID-19) is a highly formidable disease. Globally, multiple vaccines have been developed to prevent and manage this disease. However, the periodic mutations of severe acute respiratory syndrome coronavirus 2 variants cast doubt on the effectiveness of commonly used vaccines in mitigating severe disease in the Indian population. This study aimed to assess the effectiveness of the BBV152 vaccine and ChAdOx1-S vaccine in preventing severe forms of the disease. Materials and Methods: This retrospective study, based on hospital records, was conducted on 204 vaccinated COVID-19 patients using a consecutive sampling approach. Data on their vaccination status, comorbidities, and high-resolution computed tomography lung reports' computed tomography severity scores were extracted from their medical records. Fisher's exact test and binomial logistic regression analysis were employed to assess the independent associations of various factors with the dependent variables. Results: Of the 204 records, 57.9% represented males, with a mean age of 61.5±9.8 years. Both vaccines demonstrated effective protection against severe illness (90.2%), with BBV152 offering slightly better protection compared to ChAdOx1-S. Male gender, partial vaccination, comorbid conditions, and the type of vaccine were identified as independent predictors of severe lung involvement. Conclusion: This study indicates that both vaccines were highly effective (90%) in preventing severe forms of the disease in fully vaccinated individuals. When comparing the two vaccines, BBV152 was slightly more effective than ChAdOx1-S in preventing severe COVID-19.

Effect of Addition of Sugar on the Stability of Hantaan Virus Vaccine (당첨가가 한탄바이러스백신의 안정성에 미치는 영향)

  • Seong, In-Wha
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.2
    • /
    • pp.245-249
    • /
    • 1996
  • Hantaan virus vaccine was developed in 1988 and proved effective. This vaccine is a kind of inactivated vaccine, stable for two years when stored at $2-8^{\circ}C$. Almost virus vaccines including Hantaan virus vaccine are produced and kept in fluid state, and the immumogenicity can be easily destroyed at room temperature or at higher temperature. Therefore the vaccines should be kept in the refrigerator to maintain the immunogenicity. In this study, glucose and/or lactose was added as a stabilizer into Hantaan virus vaccine to increase the stability and dried in vaccum with ethanol treatment. 5% glucose and or lactose in Hantaan virus vaccine most effectively increased the stability of vaccine and maintained the immunogenicity at least for three months at room temperature. But drying with ethanol treatment did not help increasing the stability. These results suggest that glucose and lactose could be good stabilizer of virus vaccines.

  • PDF

Tumor Therapy Applying Membrane-bound Form of Cytokines

  • Kim, Young-Sang
    • IMMUNE NETWORK
    • /
    • v.9 no.5
    • /
    • pp.158-168
    • /
    • 2009
  • Tumor therapy using cytokines has been developed for last two decades. Several recombinant cytokines and tumor cell vaccines produced by cytokine gene transfer have been in clinical trials, but several side effects hamper routine clinical applications. Many cytokines are originally expressed as membrane-bound form and then processed to secretory form exerting paracrine effects. Though functional differences of these two types of cytokines are elusive yet, the membrane-bound form of cytokine may exert its effects on restricted target cells as a juxtacrine, which are in physical contacts. With the efforts to improve antitumor activities of cytokines in cancer patients, developing new strategies to alleviate life-threatening side effects became an inevitable goal of tumor immunologists. Among these, tumor cell vaccines expressing cytokines as membrane-bound form on tumor cell surface have been developed by genetic engineering techniques with the hope of selective stimulation of the target cells that are in cell-to-cell contacts. In this review, recent progress of tumor cell vaccines expressing membrane-bound form of cytokines will be discussed.

Current progress on development of respiratory syncytial virus vaccine

  • Chang, Jun
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.232-237
    • /
    • 2011
  • Human respiratory syncytial virus (HRSV) is a major cause of upper and lower respiratory tract illness in infants and young children worldwide. Despite its importance as a respiratory pathogen, there is currently no licensed vaccine for prophylaxis of HRSV infection. There are several hurdles complicating the development of a RSV vaccine: 1) incomplete immunity to natural RSV infection leading to frequent re-infection, 2) immature immune system and maternal antibodies of newborn infants who are the primary subject population, and 3) imbalanced Th2-biased immune responses to certain vaccine candidates leading to exacerbated pulmonary disease. After the failure of an initial trial featuring formalin-inactivated virus as a RSV vaccine, more careful and deliberate efforts have been made towards the development of safe and effective RSV vaccines without vaccine-enhanced disease. A wide array of RSV vaccine strategies is being developed, including live-attenuated viruses, protein subunit-based, and vector-based candidates. Though licensed vaccines remain to be developed, our great efforts will lead us to reach the goal of attaining safe and effective RSV vaccines in the near future.

Need for a safe vaccine against respiratory syncytial virus infection

  • Kim, Joo-Young;Chang, Jun
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.9
    • /
    • pp.309-315
    • /
    • 2012
  • Human respiratory syncytial virus (HRSV) is a major cause of severe respiratory tract illnesses in infants and young children worldwide. Despite its importance as a respiratory pathogen, there is currently no licensed vaccine for HRSV. Following failure of the initial trial of formalin-inactivated virus particle vaccine, continuous efforts have been made for the development of safe and efficacious vaccines against HRSV. However, several obstacles persist that delay the development of HRSV vaccine, such as the immature immune system of newborn infants and the possible Th2-biased immune responses leading to subsequent vaccine-enhanced diseases. Many HRSV vaccine strategies are currently being developed and evaluated, including live-attenuated viruses, subunit-based, and vector-based candidates. In this review, the current HRSV vaccines are overviewed and the safety issues regarding asthma and vaccine-induced pathology are discussed.

Hematological Studies in Reference to Immune Enhancement Mechanism of Formalin Applied to Formalin Inactivated Anthrax Vaccines in Rabbits (Formalin 처리(處理) 면역원(免疫原)에 대한 가토(家兎)의 혈액세포상(血液細胞像)에 관한 연구)

  • Jeon, Yun Seong;Choi, Hi In
    • Korean Journal of Veterinary Research
    • /
    • v.16 no.1
    • /
    • pp.45-51
    • /
    • 1976
  • Hematological studies were conducted in reference to the immune enhancing mechanism of formalin applied to, as an inactivating agent, a formalin inactivaed anthrax vaccines in rabbits. Rabbits were inoculated two types of formalinized anthrax immunogens namely capsular and spore vaccines in addition of formalin saline as a control. From immune rabbits, peripheral blood was collected and subjected to count a total erythrocytes, leukocytes, and pyroninophilic lymphocytes. The experimental results were summarized as followings. At a level of 0.5M 0.5ml formalin with or without the addition to vaccine, a total leukocytes count was increased. Due to the increased lymphocytes, the ratio of neutrophil and lymphocyte was lowered within 4 to 12 hours of the postinoculation. Formalin saline, anthrax spore vaccine and capsular vaccine, without group difference, caused an increased level of pyroninophilic lymphocytes in peripheral blood. Throughout the studies, a possible role of immune enhancement by formlin was disscused and suggested.

  • PDF