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Objective: Vitamin D deficiency is a major problem for human health worldwide. The mechanisms of vitamin D in the male reproductive sys-
tem are unknown. After coronavirus disease 2019 (COVID-19) vaccines were developed, doubts were raised about their possible effects on 
male fertility. Based on vitamin D’s function in the immune system, its potential role as an adjuvant for COVID-19 vaccines is intriguing. The 
aims of this study were to assess the effects of vitamin D first on sperm parameters and sex hormones, and then as an immune adjuvant on 
sperm parameters and sex hormones after study participants had received their second doses of COVID-19 vaccines. 
Methods: Phase 1 (before the COVID-19 pandemic) included 72 men with idiopathic infertility, and phase 2 had 64 participants who re-
ceived two doses of COVID-19 vaccines. Both groups were instructed to take 50,000 IU of vitamin D twice monthly for 3 months. Sperm pa-
rameters and sex hormones were assessed pre-and post-supplementation. 
Results: Regular vitamin D intake for 3 months significantly increased the participants’ vitamin D levels (p=0.0001). Both phases showed a 
positive correlation between vitamin D intake and sperm parameters. Vaccination had no negative effects on sperm parameters and sex hor-
mones. Vitamin D was associated with follicle-stimulating hormone (p=0.02) and testosterone (p=0.0001) in phase 2 after treatment. 
Conclusion: Our results support vitamin D supplementation as an immune adjunct to COVID-19 vaccination for improving sperm parame-
ters and hormone levels. COVID-19 vaccination is not harmful for male fertility potential, and vitamin D is an effective factor for male fertility. 
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health issues [2]. Based on World Health Organization (WHO) guide-
lines, some infertile men have normal sperm parameters in semen 
analysis. These cases are identified as idiopathic male infertility, 
which has no known cause. Changes in lifestyle can sometimes im-
prove sperm parameters and restore fertility to men with idiopathic 
infertility [3]. 

Vitamin D is responsible for several biological, chemical, and phys-
iological processes in the human body [4,5]. Essentially, vitamin D 
plays a primary role in regulating the balance of calcium and phos-
phorus [6] and is important in signaling pathways in various tissues 
[7,8]. It is accepted that vitamin D’s effects are more extensive in tis-
sues that contain enzymes for metabolizing vitamin D and vitamin D 
receptors (VDRs) [9]. VDR expression is present in the male reproduc-

Introduction 

Infertility is defined as the inability to succeed in pregnancy after 
one year of unprotected intercourse. This condition has psychologi-
cal, social, and economic effects on human life [1]. Studies indicate 
that 30% to 40% of infertility cases are because of the male partner’s 



tive system, including sperm cells and testis tissue [10]. In a review 
paper, Cito et al. [11] reported that in animal experimental studies on 
mice with suppressed VDRs, several defects were seen in sperm pa-
rameters and testis histology analysis. To date, the mechanisms un-
derlying the relationship between vitamin D and VDRs in the male 
reproductive system are not completely understood. Therefore, this 
issue warrants research. 

In December 2019, a novel coronavirus spread initially from Wu-
han, Hubei Province, China, and the disease it causes was named 
coronavirus disease 2019 (COVID-19). Though COVID-19 often affects 
the respiratory system directly, it also has negative effects on other 
tissues, including the nervous, digestive, endocrine, and urinary sys-
tems [12]. In a narrative review, we assessed the effects of COVID-19 
on the male reproductive system and concluded that although 
COVID-19 cannot affect male fertility directly by itself, it may affect 
male fertility indirectly through several mechanisms. The inflamma-
tory response after viral infection and fever are the two main biologi-
cal mechanisms that affect fertility in COVID-19-infected men [13]. 

About 1 year after the virus’s initial spread, the first vaccine re-
ceived approval from the U.S. Food and Drug Administration for 
emergency use to mitigate the negative effects of infections [14]. 
Clinical studies around the world have reported high effectiveness of 
vaccination against COVID-19 [15,16]. However, after the vaccine’s 
discovery, many doubts about its possible effects on health were 
raised in the non-scientific community [17]. One concern related to 
the potential adverse effects of COVID-19 vaccination on male fertili-
ty. In the review study mentioned above, we investigated scientific 
papers indicating that, in general, vaccination does not have nega-
tive effects on sperm parameters, testis tissue, or sex hormones [13]. 

Amid the COVID-19 pandemic, the importance of immune system 
support was recognized [18]. Several studies have shown that vita-
min D is a key supplement for decreasing the severity of COVID-19 
infection [7,19]. Biological evidence has demonstrated that vitamin 
D can modulate the renin-angiotensin system and the expression of 
angiotensin-converting enzyme 2 (ACE2) [20]. Consequently, vitamin 
D plays an important role in immune system function. 

Based on the role of vitamin D in the immune system, the poten-
tial role of vitamin D as an adjuvant for COVID-19 vaccines is intrigu-
ing. Some papers have suggested vitamin D supplementation as an 
immune adjuvant to increase the efficacy of vaccination [21,22]. To 
date, there is no strong clinical evidence to support vitamin D's role 
in vaccination efficacy, and most studies published are observational 
and have shown varying outcomes. 

Although studies have shown a direct association between serum 
vitamin D levels and sperm parameters, a few studies exist on the 
role of vitamin D in idiopathic male infertility (the aim of the first 
phrase of the present study). During the COVID-19 pandemic, repro-

ductive studies focused only on antibody levels and immune protec-
tion within a limited period and did not nvestigate the factors affect-
ing the efficacy of the COVID-19 vaccine. Therefore, the present 
study’s second phase aimed to address this gap. 

Methods 

1. Study design 
The main goal for the current study’s first phase was to assess the 

effects of vitamin D on sperm parameters and sex hormones after 3 
months. The second phase had two goals: to investigate the poten-
tial effects of vaccination on sperm parameters and sex hormones 
after participants had received their second dose of the COVID-19 
vaccine, and to assess the effects of vitamin D as an immune adju-
vant on sperm parameters and sex hormones after 3 months. 

In the first phase, the influence of vitamin D supplementation on 
sperm parameters in idiopathic male infertility was investigated be-
tween April and November 2019. In the second phase, the effects of 
vitamin D supplementation as well as COVID-19 vaccination on 
sperm parameters in idiopathic male infertility were investigated be-
tween May and December 2021. 

2. Phase 1 
1) Inclusion criteria 

All men with idiopathic infertility who referred to Rafsanjan urolo-
gy clinic were aged 20 to 45 years and had a body mass index ≤30 
kg/m2 participated in the study’s first phase. 

2) Exclusion criteria 
Individuals with diabetes, varicocele, cryptorchidism, drug or alco-

hol addiction, an age outside the study’s range, a thyroid or endo-
crine disorder, an immunodeficiency disorder, liver dysfunction, or 
systemic diseases were excluded from the study. Workers subject to 
chemical or metal exposure, individuals with driving-intensive jobs, 
and patients who had taken antioxidant supplements during the 
past 3 months were excluded. Individuals who did not take vitamin 
D supplements as instructed or who had a serum vitamin D level of 
≥75 ng/mL were also excluded. 

3. Phase 2 
1) Inclusion criteria 

All men with idiopathic infertility who referred to Rafsanjan urolo-
gy clinic were aged 20 to 45 years, had a body mass index ≤30 kg/
m2, and received two doses of a severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) vaccine participated in the second 
phase. Based on the study’s vaccination plan, participants were re-
quired to have received their second dose of COVID-19 vaccine be-
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tween March and August 2021, at least 1 month before the start of 
the study and 3 months before its end. 

2) Exclusion criteria 
In addition to the exclusion criteria for phase 1, recipients of a 

booster vaccine dose (third or subsequent dose), individuals who re-
ceived two different types of vaccine doses, and patients with severe 
COVID-19 during the study were excluded. 

4. Intervention 
All participants were examined by a urologist upon their first visit, 

and a sperm analysis, sex hormone test, and serum vitamin D level test 
were requested. After the laboratory report assessment, during a sec-
ond visit the patients were prescribed a 50,000 IU vitamin D pill (Daana 
D-Vigel 50,000 Vitamin D3; Daana Pharma Co.), to be taken once every 
2 weeks for 3 months. Participants were then requested to return for a 
third visit with a sperm analysis, sex hormone test, and serum vitamin 
D level test. During the study, participants were invited to ask the re-
searchers and the urologist any questions that they had. 

5. Testing 
1) Sperm analysis 

Semen samples were obtained by masturbation in a sterile plastic 
container after 2 to 4 days of sexual abstinence. Samples were kept 
in an incubator at 37 °C for 30 minutes. After liquefaction, sperm pa-
rameters (count and motility) were assessed based on the 2010 WHO 
guidelines using a light microscope (Olympus Co.). Total sperm count 
was reported by count ×106, and sperm motility was classified into 
three categories (progressive sperm, non-progressive, and immotile) 
and was presented as a percentage. Sperm morphology was also 
measured using Papanicolaou staining tests, and normal morpholo-
gy was reported as a percentage. 

2) Serum vitamin D levels 
Blood samples were obtained from peripheral veins for serum 

25-hydroxyvitamin D (25(OH)D) testing. Serum vitamin D was mea-
sured by the enzyme immunoassay method (Immunodiagnostic Sys-
tems Ltd.). The vitamin D level was reported in nanograms per milliliter 
(ng/mL). We categorized the levels based on the Vitamin D Council 
guideline, with levels of deficient (0 to 30 ng/mL), insufficient (31 to 39 
ng/mL), sufficient (40 to 80 ng/mL), and toxic (>150 ng/mL) [23]. 

3) Sex hormones 
To measure follicle-stimulating hormone (FSH) levels, a blood 

sample was collected and FSH was tested using an immuno-radio-
metric assay (Immunodiagnostics Systems). The normal range for 
FSH in men is 1.5 to 12.4 IU/L [24]. Testosterone was also measured 

from a peripheral venous blood sample using an enzyme immuno-
assay (Bayer Diagnostics PLC). The normal range for testosterone in 
men is 2.4 to 9.5 ng/mL [24]. 

6. Statistical analysis 
All data were input into a computer system and statistically ana-

lyzed using SPSS ver. 20 (IBM Corp.). The Kolmogorov-Smirnov test 
was run to assess the normal distributions of variables. In each phase, 
the paired sample t-test was used to assess the differences in param-
eters before and after the intervention for data with a normal distri-
bution. For data that were not normally distributed, the Kruskal-Wal-
lis test was used, followed by the Mann-Whitney U test. In each 
phase, the independent-sample t-test was used to compare the two 
post-intervention groups when the data had a normal distribution, 
whereas the Mann-Whitney U test was used when the data were not 
normally distributed. To analyze correlations, the Pearson test was 
used for parametric data, and the Spearman rho test was used for 
non-parametric data. A p≤0.05 was considered to indicate statistical 
significance. 

7. Ethical considerations 
In each phase, the study plan was explained to the participants in 

detail, and informed written consent was obtained. The 50,000 IU vi-
tamin D pills were provided to the participants for free. This study was 
approved by the Ethical Committee of Rafsanjan University of Medical 
Sciences, Rafsanjan, Iran (under code IR.RUMS.REC.1397.172).  

Results 

In total, 200 men were diagnosed with idiopathic male infertility 
and screened in the urology clinic. Of these, 25 individuals were ex-
cluded from enrollment in the first phase (17 did not meet the inclu-
sion criteria, six had vitamin D levels >75 ng/mL, and two did not 
agree to participate), and 32 individuals were excluded from phase 2 
(11 did not meet the inclusion criteria, nine had vitamin D levels >75 
ng/mL, 10 had received two different types of COVID-19 vaccines, 
and two did not agree to participate). Thus, phase 1 had 75 partici-
pants, and phase 2 had 68 participants. At the 3-month follow-up, 
three additional individuals were excluded from phase 1 (in one case, 
pregnancy occurred by in vitro fertilization, and two individuals did 
not take the required vitamin D supplements); four additional indi-
viduals were excluded from phase 2 (two individuals experienced a 
COVID-19 infection during the study period, and two individuals did 
not take the required supplements). Data from the remaining 72 
participants of phase 1 and 64 participants of phase 2 were analyzed 
(Figure 1). 

The mean ages were 31.68±3.42 and 31.68±3.42 years in phases 1 
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Table 1. Demographic characteristics of participants in the two study phases 

Characteristic Vitamin D Vitamin D & COVID-19 vaccine p-value
Male age (yr) 31.68 ± 3.42 31.68 ± 3.42 0.31
Body mass index (kg/m2) 28.17 ± 1.31 27.56 ± 1.49 0.91
Infertility duration (yr) 5.56 ± 3.94 6.25 ± 4.05 0.38

Values are presented as mean±standard deviation.
COVID-19, coronavirus disease 2019.

and 2, respectively (Table 1). Table 2 shows the characteristics of 
sperm parameters and sex hormones in each phase, pre- and 
post-treatment. The baseline mean vitamin D level was 29.43±8.21 
ng/mL in phase 1 and 33.20±7.54 ng/mL in phase 2. A positive asso-
ciation was observed in both phases between vitamin D intake and 
sperm parameters, pre- to post-treatment. Vitamin D status did not 
significantly affect hormone levels in phase 1 (FSH, p=0.676; testos-
terone, p=0.080), but interestingly, the effects were statistically sig-
nificant in phase 2 (FSH, p=0.02; testosterone, p=0.0001) (Table 2). 

Before treatment, vitamin D deficiency, insufficiency, and sufficien-
cy levels were detected in 41, 16, and 15 participants in phase 1, re-
spectively, and in 21, 31, and 12 participants in phase 2, respectively. 
Supplementation elevated participants’ vitamin D levels statistically 
significantly in both phases (p=0.001). After treatment, no vitamin D 
deficiency was observed in participants (63 had sufficient levels and 
one had insufficient levels). No significant correlation was found be-
tween vitamin D levels and either sperm parameters or sex hor-
mones (Figures 2 and 3). 

Table 3 shows the correlation in each phase between sperm pa-
rameters and vitamin D . Vitamin D levels showed positive correla-
tions with sperm count (r=0.296, p<0.01), progressive motility 
(r=0.509, p<0.0001), and percentage of normal morphology 
(r=0.352, p<0.002) in phase 1 pre-treatment. A negative correlation 
was found between vitamin D and non-progressive sperm motility 
(r=–0.327, p<0.005) as well as immotile sperm (r=0.329, p<0.005). 

Discussion 

Vitamin D deficiency is a global problem [25]. In 2015, Tak et al. [26] 
reported that 12.5% to 48.5% of men had vitamin D deficiency. Simi-
larly, the results of the present study showed that at the start of the 
first phase, 54.9% and 22.22% of the participants had deficient and 
insufficient levels of vitamin D, respectively. At the start of phase 2, 
32.8% and 48.43% of the participants had deficient and insufficient 
levels, respectively. We also found that vitamin D levels were signifi-
cantly diminished in men with idiopathic infertility who had de-

Excluded (n=25)
Did not meet the inclusion criteria (n=17) 
Vitamin D >75 (n=6)
Decline to participate (n=2)

Excluded (n=3)
Pregnancy by IVF (n=1) 
Did not take the vitamin D supplement (n=2)

Participated (n=75) 
Received vitamin D 

(50,000 IU twice/month)

Lost to follow-up  
(3 months) (n=72)

Analyzed (n=72)

Participated (n=68) 
Received vitamin D 

(50,000 IU twice/month)

Lost to follow-up  
(3 months) (n=64)

Analyzed (n=64)

Excluded (n=4)
Did not take the vitamin D supplement (n=2)
COVID-19 infection (n=2)

Excluded (n=32)
Did not meet the inclusion criteria (n=11) 
Vitamin D >75 (n=9)
Received two different types of COVID-19 

vaccines (n=10)
Declined to participate (n=2)

200 Allocated in two phasesEnrollment

Allocation

Follow-up

Analysis

Phase 1 Phase 2

Figure 1. Flow diagram of participants in both study phases. COVID, coronavirus disease; IVF, in vitro fertilization.
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Table 2. Comparison of sperm parameters and sex hormone levels pre- and post-treatment in two phases 

Parameter
Phase 1 (n = 72)

(vitamin D) p-value
Phase 2 (n = 64)

(vitamin D & COVID-19 vaccination) p-value
Pre-treatment Post-treatment Pre-treatment Post-treatment

Count ( × 106/mL) 60.30 ± 20.57 75.68 ± 24.12 0.0001 68.29 ± 23.37 89.20 ± 29.46 0.0001
Motility (%)
  Progressive 47.95 ± 8.38 53.76 ± 7.40 0.0001 52.51 ± 9.82 62.73 ± 9.34 0.0001
  Non-progressive 14.29 ± 5.65 16.47 ± 4.04 0.0001 15.04 ± 4.68 16.07 ± 5.70 0.0500
  Immotile 37.75 ± 6.22 29.48 ± 6.16 0.0001 32.43 ± 7.71 21.18 ± 7.91 0.0001
Morphology (%normal) 21.95 ± 7.90 30.65 ± 10.93 0.0001 25.89 ± 8.18 39.15 ± 11.04 0.0001
Follicle-stimulating hormone (IU/L) 4.41 ± 1.04 4.49 ± 1.30 0.6760 4.55 ± 1.28 3.59 ± 1.14 0.0001
Testosterone (ng/mL) 4.46 ± 1.46 4.84 ± 1.40 0.0800 4.06 ± 1.28 4.57 ± 1.25 0.0260
Vitamin D (ng/mL) 29.43 ± 8.21 48.25 ± 8.91 0.0001 33.20 ± 7.54 55.71 ± 6.99 0.0001

Values are presented as mean±standard deviation. A p<0.05 was considered to indicate statistical significance.
COVID-19, coronavirus disease 2019.

Figure 2. Comparison of study parameters at different vitamin D levels in (A) pre-treatment and (B) post-treatment phases 1. SD, standard 
deviation; FSH, follicle-stimulating hormone.

120

100

80

60

40

20

0

120

100

80

60

40

20

0

■ Sufficiency

■ Insufficient

■ Deficiency

■ Sufficiency

■ Deficiency

M
ea

n 
an

d 
SD

 o
f p

ar
am

et
er

s

M
ea

n 
an

d 
SD

 o
f p

ar
am

et
er

s

Pre-treatment phase 1 Post-treatment phase 1

Count (×
10

6 /m
L)

Count (×
10

6 /m
L)

Progressi
ve

 (%
)

Progressi
ve

 (%
)

Non-progressi
ve

 (%
)

Non-progressi
ve

 (%
)

Im
motile

 (%
)

Im
motile

 (%
)

Morphology (%
 norm

al)

Morphology (%
 norm

al)

FSH (IU
/L)

FSH (IU
/L)

Testo
ste

rone (n
g/m

L)

Testo
ste

rone (n
g/m

L)

Vita
min D (n

g/m
L)

Vita
min D (n

g/m
L)

AA BB

creased sperm motility and morphology. The results of studies by 
Blomberg Jensen et al. [27] in 2016 and Rehman et al. [28] in 2018 
were similar to our findings. However, a few studies have reported 
that vitamin D had no effects on sperm parameters [29,30]. Case se-
lection, skin color [31], age, and geographical location [32] are the 
main factors identified as related to serum vitamin D levels in the liter-
ature. It is possible that differences in these factors may explain dis-
crepancies in studies’ results, although the reasons for these inconsis-
tent findings are not clear, and the discordant findings in the literature 
may be influenced by study design, sample size, participant charac-
teristics, measurement methods, and other confounding factors. 

A comparison of pre- and post-treatment measurements in phase 
1 showed that vitamin D levels played a major role in improving 
sperm parameters. In phase 1, vitamin D levels increased significant-
ly after treatment, and all sperm parameters (count, motility, and 
morphology) improved to a statistically significant extent. In a similar 

pre- and post-treatment study, Alzoubi et al. [33] investigated the ef-
fects of 50,000 IU vitamin D on 117 men with idiopathic infertility 
and demonstrated that vitamin D had favorable effects on sperm 
parameters, especially sperm motility, after 2 months. 

Previous studies have suggested a potential link between low vita-
min D levels and abnormal sperm morphology. For example, a study 
published in 2016 reported that men with vitamin D deficiency had 
a higher prevalence of abnormal sperm morphology than those with 
sufficient vitamin D levels [28]. Another study, published in 2017, 
found an association between lower vitamin D levels and increased 
sperm DNA fragmentation, which could be related to sperm mor-
phology abnormalities [34]. However, other studies have not found a 
significant association between vitamin D levels and sperm mor-
phology. For instance, a study published in 2015 examined the rela-
tionship between vitamin D levels and semen parameters, including 
sperm morphology, in a large cohort of men, but did not find a sig-

www.eCERM.org 129

M Zarepoor et al.  Vitamin D supplementation as COVID-19 vaccine adjuvant



120

100

80

60

40

20

0

■ Sufficiency

■ Insufficient

■ Deficiency

M
ea

n 
an

d 
SD

 o
f p

ar
am

et
er

s

Pre-treatment phase 2 Post-treatment phase 2

Count (×
10

6 /m
L)

Progressi
ve

 (%
)

Non-progressi
ve

 (%
)

Im
motile

 (%
)

Morphology (%
 norm

al)

FSH (IU
/L)

Testo
ste

rone (n
g/m

L)

Vita
min D (n

g/m
L)

120

100

80

60

40

20

0

■ Sufficiency

■ Deficiency

M
ea

n 
an

d 
SD

 o
f p

ar
am

et
er

s

Count (×
10

6 /m
L)

Progressi
ve

 (%
)

Non-progressi
ve

 (%
)

Im
motile

 (%
)

Morphology (%
 norm

al)

FSH (IU
/L)

Testo
ste

rone (n
g/m

L)

Vita
min D (n

g/m
L)

Figure 3. Comparison of study parameters at different vitamin D levels in (A) pre-treatment and (B) post-treatment phases 2. SD, standard 
deviation; FSH, follicle-stimulating hormone
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Table 3. Correlations of sperm parameters and sex hormones with vitamin D levels in the two study phases 

Parameter Value
Vitamin D

Phase 1 (n = 72) Phase 2 (n = 64)
Pre-treatment Post-treatment Pre-treatment Post-treatment

Count ( × 106/mL) r 0.296a) 0.377b) 0.298a) –0.126
p-value 0.012 0.001 0.017 0.320

Progressive motility (%) r 0.509b) 0.203 0.403b) –0.231
p-value 0.000 0.087 0.001 0.067

Non-progressive (%) r –0.327b) –0.161 –0.259a) 0.105
p-value 0.005 0.175 0.039 0.407

Immotile (%) r –0.329b) –0.169 –0.382b) 0.142
p-value 0.005 0.156 0.002 0.263

Morphology (% normal) r 0.352b) 0.101 0.446b) –0.122
p-value 0.002 0.397 0.000 0.335

Follicle-stimulating hormone (IU/L) r –0.012 –0.035 –0.011 –0.093
p-value 0.923 0.772 0.931 0.466

Testosterone (ng/mL) r 0.178 0.002 0.004 –0.006
p-value 0.135 0.986 0.978 0.963

a)Correlation is significant at the 0.05 level (two-tailed); b)Correlation is significant at the 0.01 level (two-tailed).

nificant correlation [26]. It is important to consider that the available 
research in this area has certain limitations, such as variations in 
study design, participant characteristics, and measurement methods 
for assessing vitamin D levels and sperm parameters. Additionally, 
the mechanisms underlying the potential effects of vitamin D on 
sperm quality, including motility and morphology, are not fully un-
derstood. 

Studies have confirmed that an increase in intracellular calcium 
levels leads to a higher serum vitamin D level [6]. Calcium is a key 
factor for sperm motility [35]. Vitamin D also plays an important role 
in the sperm acrosome reaction [36]. Thus, a positive relationship ex-
ists between vitamin D level and sperm maturity and quality. Previ-
ous studies have identified VDRs in the male reproductive system, 

specifically in Sertoli cells, Leydig spermatogenesis germ lines, and 
mature sperm [10], and some vitamin D metabolizing enzymes have 
been found in sperm heads [37]. The enzymes involved in vitamin D 
metabolism include 1α-hydroxylase (CYP27B1), which converts inac-
tive vitamin D (25(OH)D) to its active form (1,25-dihydroxyvitamin D), 
and 24-hydroxylase (CYP24A1), which facilitates the degradation of 
active vitamin D. The presence of these enzymes in various cells 
within the male reproductive system indicates that these cells have 
the potential to synthesize and degrade vitamin D locally, indepen-
dent of systemic vitamin D metabolism. This local metabolism of vi-
tamin D suggests that the male reproductive organs may have a 
unique ability to regulate their own vitamin D status and response 
[38,39]. Based on these findings, we consider the effects of vitamin D 
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on sperm parameters to be favorable. The specific roles and implica-
tions of local vitamin D metabolism in the male reproductive system 
are still an active area of research, and further studies are needed to 
fully understand the significance of this process in both animals and 
humans. 

Researchers have recently suggested that 4-hydroxynonenal (4-
HNE) may serve as an oxidative stress messenger [40]. In 2021, Sha-
hid et al. [41] investigated the roles of vitamin D and oxidative stress 
in male fertility and found that 4-HNE had a negative relationship 
with vitamin D levels. Because 4-HNE can mediate lipid peroxidation, 
it plays a role in the negative impact of oxidative stress on sperm pa-
rameters in infertile men. In the presence of a sufficient level of vita-
min D, the level of 4-HNE significantly decreased [41]. Consequently, 
the role of vitamin D in improving sperm parameters may be be-
cause of its antioxidant properties. Although we have tried to de-
scribe the known mechanisms that pertain to vitamin D’s effects on 
sperm parameters, we are currently unable to propose a strict, pre-
cise mechanism for how vitamin D may influence sperm parameters 
in infertile men. 

Our results in phase 1 showed no relationship between vitamin D 
levels and sex hormones after treatment. The effects of hormone lev-
els on reproductive ability have been established [42]. Several studies 
have reported disturbances in FSH and testosterone levels in infertile 
men [42,43]. Physiological studies have also identified the role of vita-
min D as an important factor altering steroidogenesis (i.e., the pro-
duction of hormones) [44,45]. Nevertheless, the contradictory reports 
on vitamin D's effects on sperm parameters and sex hormone levels 
in different studies indicate a collective gap in knowledge related to 
the exact mechanism of vitamin D's effects on human physiology.  

Abbasihormozi et al. [36] reported in 2017 that vitamin D did not 
have any effect on male reproductive hormones. They concluded 
that vitamin D may not have any effect on the hypothalamus-pitu-
itary-gonads axis [36]. In agreement with our results, Abbasihormozi 
et al. [36] found a positive relationship between serum vitamin D 
levels and sperm motility in infertile men, but they reported no asso-
ciation between vitamin D and sex hormone levels. It is likely that 
the effects of vitamin D on sperm parameters and sex hormones are 
distinct. In 2016, Zhu et al. [46] observed no correlation between sex 
hormone levels and vitamin D levels in 186 infertile men. Interesting-
ly, they found that a higher level of prolactin correlated with vitamin 
D deficiency in infertile men [46]. Prolactin receptors, like VDRs, are 
expressed in the testis and male reproductive system [47]. An in-
crease in the level of prolactin may disrupt spermatogenesis and 
hormone production through inhibition of VDRs. 

During the COVID-19 pandemic, studies have investigated differ-
ent factors that could be useful for preventing or mitigating 
COVID-19 [48]. Several studies have reported that vitamin D and an-

tioxidants can protect the human body against the progression of 
COVID-19 [19] because vitamin D elevates adaptive immune re-
sponses, can alter the expression of ACE2, and can modulate re-
nin-angiotensin homeostasis, thereby playing an important role in 
COVID-19 prevention [20]. However, the potential role of vitamin D 
in the efficacy of different COVID-19 vaccines remains ambiguous. 
Based on the molecular processes of immune responses in the pres-
ence of vitamin D, we speculate that vitamin D may play a balancing 
role in increasing COVID-19 vaccine efficacy. 

The significant and positive effects of vitamin D on the immune 
system motivated us to investigate the potential role of vitamin D as 
an immune adjuvant for COVID-19 vaccines and to establish the cur-
rent study’s second phase. The results of phase 2 were remarkable. 
Before vitamin D supplementation, the pre-treatment analysis com-
paring sperm parameters and sex hormone levels at different vita-
min D levels showed a significant correlation between sperm param-
eter improvement and vitamin D levels. At deficient and insufficient 
vitamin D levels, sperm parameters were significantly lower than 
when vitamin D levels were sufficient. These results are supported by 
the positive effects of vitamin D in calcium homeostasis [6], the ex-
pression of VDRs in testis tissue and sperm cells [10], the antioxidant 
role of vitamin D [19], and the effects on prolactin levels [46], as dis-
cussed above. Beyond this, COVID-19 vaccination did not have nega-
tive effects on sperm parameters or sex hormones. In our earlier re-
view of the literature, we found that COVID-19 vaccines were not 
harmful for male reproductive potential [13]. The present study’s 
findings add further support. 

In phase 2, a positive correlation between sperm parameters and 
vitamin D levels was observed after treatment. In contrast to the sim-
ilar results after treatment in phase 1, in phase 2 the levels of testos-
terone and FSH had changed significantly compared to their 
pre-treatment levels. We found that the levels of vitamin D in almost 
all participants were sufficient after supplementation of 50,000 IU vi-
tamin D for 3 months; only one patient showed an insufficient level 
of vitamin D. Since almost all participants had sufficient vitamin D 
levels, the lack of a significant correlation between vitamin D levels 
and the study parameters is acceptable. 

It was suggested that vitamin D plays an important role in con-
trolling infection and inflammation during COVID-19 infection by at-
tenuating the risk of a cytokine storm (rapid elevation in pro-inflam-
matory cytokines) [49]. Peng et al. [19] in 2021 investigated the ef-
fects of vitamin D on 160 patients infected with COVID-19. They re-
ported a direct correlation between testosterone and vitamin D lev-
els in young men, but not in old men. They also observed significant-
ly lower testosterone levels in hospitalized men than in healthy men 
[19]. Testosterone may regulate the immune response, which could 
explain the higher level of susceptibility to COVID-19 infection in 
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men than in women [50]. Our results showed that vaccination and 
vitamin D supplementation are effective for increasing testosterone 
levels in men with idiopathic infertility. 

Wan et al. [51] demonstrated that appropriate vitamin D intake 
can moderate immune system responses after COVID-19 vaccina-
tion. Small et al. [52] assessed the molecular mechanisms of vitamin 
D in increasing the strength of the immune system. They reported 
that when vitamin D levels were sufficient, it exhibited binding to 
VDRs, which could induce the expression of two antimicrobial pep-
tides (cathelicidin and defensin 4A). Finally, in this vitamin D-depen-
dent antimicrobial pathway, autophagy development and innate 
immunity improved [52]. 

Similar results regarding other vaccines’ efficacy in the presence of 
sufficient vitamin D can shed light on the effects of the COVID-19 
vaccine and sufficient vitamin D levels. For instance, Ziegler et al. [53] 
reported that vitamin D sufficiency can improve the efficacy of vacci-
nation against influenza. 

We found no agreement among researchers on the effective func-
tion of vitamin D as an immune adjuvant with COVID-19 vaccination. 
Our results showed positive effects of vitamin D on sperm parame-
ters and sex hormones in men with idiopathic infertility who had re-
ceived two doses of COVID-19 vaccines. However, we cannot defini-
tively state that the increase in sperm parameters and sex hormones 
was due to the immune adjuvant properties of vitamin D along with 
the vaccine. Furthermore, the effects of vitamin D supplementation 
in the vaccine recipients cannot be ignored. Therefore, future studies 
may provide new insights into the effects of vitamin D on COVID-19 
vaccine efficacy. 

In conclusion, vitamin D deficiency has a significant negative effect 
on sperm parameters. Supplementation with vitamin D (50,000 IU 
once every 2 weeks for 3 months) was effective in increasing vita-
min D levels and improved sperm parameters. Our results also 
support the use of vitamin D supplements as an immune adjunct to 
COVID-19 vaccination. 

Our study has several strengths. Based on our knowledge, no pub-
lished paper to date has assessed the effects of vitamin D and vacci-
nation on male fertility. This is the main novelty and strong point of 
the present study. Most of our study population had low levels of vi-
tamin D, and supplementation was effective in improving the vita-
min D level to sufficiency. We minimized the effects of seasonal 
changes on vitamin D levels by sampling equally in both phases in 
spring, summer, and autumn. Having similar sample sizes between 
the two phases increased the accuracy of detecting intervention ef-
fects. We attempted to describe the observed mechanisms related to 
possible effects of vitamin D on sperm parameters and sex hor-
mones. The similarities in the outcomes of several parameters after 
both phases were helpful for validating our results. The use of one 

type of vaccine in all patients reduced the likelihood that different ef-
fects would be observed with different vaccines and provided more 
reliable results. All sperm analyses and hormonal parameters were 
tested in a single laboratory. The comparisons made before and after 
treatment and the separation of the investigation into two phases 
are the main strengths of this study. 

In the present study, lifestyle effects such as smoking, pesticide ex-
posure, and job type were not assessed. Sperm chromatin quality 
and DNA fragmentation tests were also not evaluated. Participants’ 
levels of calcium, iron, and phosphorus were not measured, and we 
likewise did not measure the levels of blood immunological factors 
or immunoglobulin after vaccination in phase 2. 
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