• 제목/요약/키워드: Vaccine strategy

검색결과 84건 처리시간 0.029초

최근 진화하는 마렉병의 원인 분석 (Evolving Problem Analyses of Recent Marek's Disease)

  • 장형관;박영명;차세연;박종범
    • 한국가금학회지
    • /
    • 제34권4호
    • /
    • pp.301-318
    • /
    • 2007
  • Marek's disease (MD) is a highly contagious lymphoproliferative disease of poultry caused by the oncogenic herpesvirus designated Marek's disease virus (MDV). MD has a worldwide distribution and is thought to cause an annual loss over US$ one billion to the poultry industry. Originally described as a paralytic disease, today MD is mostly manifested as an acute disease with tumors in multiple visceral organs. MD is controlled essentially by the widespread use of live vaccines administered either in ovo into 18-day-old embryos or into chicks immediately after they hatch. In spite of the success of the vaccines in reducing the losses from the disease in the last 30 years, MDV strains have shown continuous evolution in virulence acquiring the ability to overcome the immune responses induced by the vaccines. During this period, different generations of MD vaccines have been introduced to protect birds from the increasingly virulent MDV strains. However, the virus will be countered each new vaccine strategy with ever more virulent strains. In spite of this concern, currently field problem from MD is likely to be controled by strategy of using bivalent vaccine. But, potential risk factors for outbreak of MD are still remained in this condition. The major factors can be thought that improper handling and incorrect administration of the vaccine, infection prior to establishment of immunity, suppression of immune system by environmental stress and outbreaks of more virulent MDV strain by using vaccine and genetic resistance of host.

2000-2014년 한국에서 수행된 백신 유용성 평가 연구 (Vaccine Evaluation Studies Performed in Korea from 2000 to 2014)

  • 차지혜;김한울;이소영;조혜경;안종균;김경효
    • Pediatric Infection and Vaccine
    • /
    • 제23권2호
    • /
    • pp.117-127
    • /
    • 2016
  • 목적: 2000년부터 식품의약품안전처 주관 하에 국내 주요 백신의 안전성과 면역원성에 대한 임상평가 자료를 확보하기 위한 백신 평가 연구를 시작하였다. 본 연구는 백신의 면역원성, 효능, 효과, 안전성 및 다른 평가분야에 대해 수행된 연구 및 보고서들을 고찰하여 각 백신 별 유용성 평가 자료를 찾아 분석하고자 하였다. 방법: 지난 2000년부터 2014년까지 여러 연구자들에 의해 "백신 유용성 평가" 과제가 수행되었다. 백신 유용성 평가 자료들의 결과 및 성과들을 고찰하여 향후 국내 백신 정책에 활용할 수 있는 가능성을 분석하였다. 각 백신은 백신 평가 영역에 따라 자료를 분석하고 체계화하였다. 결과: 2000년부터 2014년까지 주요 백신에 대해 총 83개의 연구과제가 수행되었다. 각 백신 별로는 BCG 8개, DTaP/Td 14개, 폴리오 1개, Hib 5개, 폐구균 3개, 인플루엔자 11개, A형 간염 3개, MMR 11개, 수두 11개, 일본뇌염 16개였다. 평가 영역은 안전성, 면역원성, 면역도, 면역지속능, 효능평가, 효과평가, 유효성 평가기술, 품질평가 및 기타로 나누어 분석하였다. 결론: 우리나라에서 수행된 백신 유용성 평가 연구를 통해 유용한 자료가 도출되어 향후 국내 백신 평가 사업, 백신 정책 수립 및 대중/전문가 교육에 필요한 기초자료로 활용될 수 있을 것이다.

Expression and evaluation of porcine circovirus type 2 capsid protein mediated by recombinant adeno-associated virus 8

  • Li, Shuang;Wang, Bo;Jiang, Shun;Lan, Xiaohui;Qiao, Yongbo;Nie, Jiaojiao;Yin, Yuhe;Shi, Yuhua;Kong, Wei;Shan, Yaming
    • Journal of Veterinary Science
    • /
    • 제22권1호
    • /
    • pp.8.1-8.11
    • /
    • 2021
  • Background: Porcine circovirus type 2 (PCV2) is an important infectious pathogen implicated in porcine circovirus-associated diseases (PCVAD), which has caused significant economic losses in the pig industry worldwide. Objectives: A suitable viral vector-mediated gene transfer platform for the expression of the capsid protein (Cap) is an attractive strategy. Methods: In the present study, a recombinant adeno-associated virus 8 (rAAV8) vector was constructed to encode Cap (Cap-rAAV) in vitro and in vivo after gene transfer. Results: The obtained results showed that Cap could be expressed in HEK293T cells and BABL/c mice. The results of lymphocytes proliferative, as well as immunoglobulin G (IgG) 2a and interferon-γ showed strong cellular immune responses induced by Cap-rAAV. The enzyme-linked immunosorbent assay titers obtained and the IgG1 and interleukin-4 levels showed that humoral immune responses were also induced by Cap-rAAV. Altogether, these results demonstrated that the rAAV8 vaccine Cap-rAAV can induce strong cellular and humoral immune responses, indicating a potential rAAV8 vaccine against PCV2. Conclusions: The injection of rAAV8 encoding PCV2 Cap genes into muscle tissue can ensure long-term, continuous, and systemic expression.

Vaccines against periodontitis: a forward-looking review

  • Choi, Jeom-Il;Seymour, Gregory J.
    • Journal of Periodontal and Implant Science
    • /
    • 제40권4호
    • /
    • pp.153-163
    • /
    • 2010
  • Periodontal disease, as a polymicrobial disease, is globally endemic as well as being a global epidemic. It is the leading cause for tooth loss in the adult population and has been positively related to life-threatening systemic diseases such as atherosclerosis and diabetes. As a result, it is clear that more sophisticated therapeutic modalities need to be developed, which may include vaccines. Up to now, however, no periodontal vaccine trial has been successful in satisfying all the requirements; to prevent the colonization of a multiple pathogenic biofilm in the subgingival area, to elicit a high level of effector molecules such as immunoglobulin sufficient to opsonize and phagocytose the invading organisms, to suppress the induced alveolar bone loss, or to stimulate helper T-cell polarization that exerts cytokine functions optimal for protection against bacteria and tissue destruction. This article reviews all the vaccine trials so as to construct a more sophisticated strategy which may be relevant in the future. As an innovative strategy to circumvent these barriers, vaccine trials to stimulate antigen-specific T-cells polarized toward helper T-cells with a regulatory phenotype (Tregs, $CD_{4+}$, $CD_{25+}$, $FoxP_{3+}$) have also been introduced. Targeting not only a single pathogen, but polymicrobial organisms, and targeting not only periodontal disease, but also periodontal disease-triggered systemic disease could be a feasible goal.

Digital Technology Practices and Vaccine Campaign in Korea: International Perceptions on Health Diplomacy amid COVID-19 Crisis

  • Tahira, Iffat
    • Journal of Contemporary Eastern Asia
    • /
    • 제21권2호
    • /
    • pp.27-46
    • /
    • 2022
  • The purpose of this study is two-fold: first, to discuss the concept of health diplomacy and the Korean government's response to contain the COVID-19 pandemic; second, to assess and compare assumptions of variances about foreigners' perceptions of how Korea is leveraging digital technology in battling the coronavirus spread, and its vaccine campaign; through the lenses of Chinese, Filipino, and Pakistani foreign nationals who are currently living in Korea. A total of 219 foreigners responded to the survey. The collected data were analyzed as percentages, mean averages, t-test, and ANOVA for statistical analysis. Results show that Korea is utilizing its digital technology practices and vaccine campaign in battling the pandemic through efforts of health diplomacy. ANOVA indicated significant results and assumptions of variance across three ethnic groups showing the Pakistani population had higher mean scores than the Chinese and Filipino about Korea's health diplomacy during the pandemic. This study contributes to the literature on Korea's digital technology practices and vaccine campaigns amidst the COVID-19 pandemic by promoting its image through health diplomacy efforts. It projects the country's soft image on a global scale, to save the lives of locals and foreign nationals, by providing insights into health diplomacy in Korea.

Porcine epidemic diarrhea virus: an update overview of virus epidemiology, vaccines, and control strategies in South Korea

  • Guehwan Jang;Duri Lee;Sangjune Shin;Jeonggyo Lim;Hokeun Won;Youngjoon Eo;Cheol-Ho Kim;Changhee Lee
    • Journal of Veterinary Science
    • /
    • 제24권4호
    • /
    • pp.58.1-58.25
    • /
    • 2023
  • Porcine epidemic diarrhea virus (PEDV) has posed significant financial threats to the domestic pig industry over the last three decades in South Korea. PEDV infection will mostly result in endemic persistence in the affected farrow-to-finish (FTF) herds, leading to endemic porcine epidemic diarrhea (PED) followed by year-round recurrent outbreaks. This review aims to encourage collaboration among swine producers, veterinarians, and researchers to offer answers that strengthen our understanding of PEDV in efforts to prevent and control endemic PED and to prepare for the next epidemics or pandemics. We found that collaboratively implementing a PED risk assessment and customized four-pillar-based control measures is vital to interrupt the chain of endemic PED in affected herds: the former can identify on-farm risk factors while the latter aims to compensate for or improve weaknesses via herd immunity stabilization and virus elimination. Under endemic PED, long-term virus survival in slurry and asymptomatically infected gilts ("Trojan Pigs") that can transmit the virus to farrowing houses are key challenges for PEDV eradication in FTF farms and highlight the necessity for active monitoring and surveillance of the virus in herds and their environments. This paper underlines the current knowledge of molecular epidemiology and commercially available vaccines, as well as the risk assessment and customized strategies to control PEDV. The intervention measures for stabilizing herd immunity and eliminating virus circulation may be the cornerstone of establishing regional or national PED eradication programs.

Application of Apoptogenic Pretreatment to Enhance Anti-tumor Immunity of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)-secreting CT26 Tumor Cells

  • Jun, Do-Youn;Jaffee, Elizabeth M;Kim, Young-Ho
    • IMMUNE NETWORK
    • /
    • 제5권2호
    • /
    • pp.110-116
    • /
    • 2005
  • Background: As an attempt to develop a strategy to improve the protective immune response to GM-CSF-secreting CT26 (GM-CSF/CT26) tumor vaccine, we have investigated whether the apoptogenic treatment of GM-CSF/CT26 prior to vaccination enhances the induction of anti-tumor immune response in mouse model. Methods: A carcinogeninduced mouse colorectal tumor, CT26 was transfected with GM-CSF gene using a retroviral vector to generate GM-CSF-secreting CT26 (CT26/GM-CSF). The CT26/GM-CSF was treated with ${\gamma}$-irradiation or mitomycin C to induce apoptosis and vaccinated into BALB/c mice. After 7 days, the mice were injected with a lethal dose of challenge live CT26 cells to examine the protective effect of tumor vaccination in vivo. Results: Although both apoptotic and necrotic CT26/GM-CSF vaccines were able to enhance anti-tumor immune response, apoptotic CT26/GM-CSF induced by pretreatment with ${\gamma}$-irradiation (50,000 rads) was the most potent in generating the anti-tumor immunity, and thus 100% of mice vaccinated with the apoptotic cells remained tumor free for more than 60 days after tumor challenge. Conclusion: Apoptogenic pretreatment of GM-CSF-secreting CT26 tumor vaccine by ${\gamma}$-irradiation (50,000 rads) resulted in a significant enhancement in inducing the protective anti-tumor immunity. A rapid induction of apoptosis of CT26/GM-CSF tumor vaccine at the vaccine site might be critical for the enhancement in anti-tumor immune response to tumor vaccine.

바이러스 질병 예방을 위한 식물 경구 백신 연구 동향 (Recent Studies of Edible Plant Vaccine for Prophylactic Medicine against Virus-mediated Diseases)

  • 한범수;박종석;김형국;하선화;조강진;김용환;김종범
    • Journal of Plant Biotechnology
    • /
    • 제31권2호
    • /
    • pp.151-161
    • /
    • 2004
  • Transgenic plants have been studied as delivery system for edible vaccine against various diseases. Edible plant vaccines have several potential advantages as follows: an inexpensive source of antigen, easy administration, reduced need for medical personnel, economical to mass produce and easy transport, heat-stable vaccine without refrigerator, generation of systemic and mucosal immunity and safe antigen without fetal animal-virus contaminants. The amount of recombinant antigens in transgenic plants ranged from 0.002 to 0.8% in total soluble protein, depending on promoters for the expression of interested genes and plants to be used for transformation. Throughout the last decade, edible plant vaccine made notable progresses that protect from challenges against virus or bacteria. However edible plant vaccines have still problems that could be solved. First, the strong promoter or inducible promoter or strategy of protein targeting could be solved to improve the low expression of antigens in transgenic plants. Second, the transformation technique of target plant should be developed to be able to eat uncooked. Third, marker-free vector could be constructed to be more safety. In this review we describe advances of edible plant vaccines, focusing on the yields depending on plants/promoters employed and the results of animal/clinical trials, and consider further research for the development of a new plant-derived vaccine.

Intake of Korean Red Ginseng Extract and Saponin Enhances the Protection Conferred by Vaccination with Inactivated Influenza A Virus

  • Xu, Mei Ling;Kim, Hyoung-Jin;Choi, Yoo-Ri;Kim, Hong-Jin
    • Journal of Ginseng Research
    • /
    • 제36권4호
    • /
    • pp.396-402
    • /
    • 2012
  • Vaccination is the main strategy for preventing influenza infection. However, vaccine efficacy is influenced by several factors, including age and health status. The efficacy of the influenza vaccine is much lower (17% to 53%) in individuals over 65 yr of age compared with young adults (70% to 90%). Therefore, increasing vaccine efficacy remains a challenge for the influenza vaccine field. In this study, we investigated the impact of supplementing vaccination with the dietary intake of Korean red ginseng (RG) extract and RG saponin. Mice were immunized two times intranasally with inactivated influenza A (H1N1) virus. Mice received RG extract or RG saponin orally for 14 d prior to the primary immunization. After the primary immunization, mice continued to receive RG extract or RG saponin until the secondary immunization. Mice vaccinated in combination with dietary intake of RG extract and RG saponin showed elevated serum anti-influenza A virus IgG titers and improved survival rates in lethal influenza A virus infection: 56% and 63% of mice receiving RG extract or RG saponin survived, respectively, while 38% of mice that only received the vaccine survived. Moreover, mice receiving RG extract supplementation recovered their body weight more quickly than those not receiving RG extract supplementation. We propose that the dietary intake of RG extract and RG saponin enhances the vaccine-induced immune response and aids in providing protection against influenza virus infection.

Epitope발현 DNA Vaccine과 Recombinant Vaccinia Virus를 이용한 Heterologous Prime-boost Vaccination에 의하여 유도되는 CD8+ T 세포 매개성 면역 (CD8+ T Cell-mediated Immunity Induced by Heterologous Prime-boost Vaccination Based on DNA Vaccine and Recombinant Vaccinia Virus Expressing Epitope)

  • 박성옥;윤현아;;이존화;채준석;어성국
    • IMMUNE NETWORK
    • /
    • 제5권2호
    • /
    • pp.89-98
    • /
    • 2005
  • Background: DNA vaccination represents an anticipated approach for the control of numerous infectious diseases. Used alone, however, DNA vaccine is weak immunogen inferior to viral vectors. In recent, heterologous prime-boost vaccination leads DNA vaccines to practical reality. Methods: We assessed prime-boost immunization strategies with a DNA vaccine (minigene, $gB_{498-505}$ DNA) and recombinant vaccinia virus $(vvgB_{498-505})$ expressing epitope $gB_{498-505}$ (SSIEF ARL) of CD8+ T cells specific for glycoprotein B (gB) of herpes simplex virus (HSV). Animals were immunized primarily with $gB_{498-505}$ epitope-expressing DNA vaccine/recombinant vaccinia virus and boosted with alternative vaccine type expressing entire Ag. Results: In prime-boost protocols using vvgBw (recombinant vaccinia virus expressing entire Ag) and $vvgB_{498-505}$, CD8+ T cell-mediated immunity was induced maximally at both acute and memory stages if primed with vvgBw and boosted with $vvgB_{498-505}$ as evaluated by CTL activity, intracellular IFN-staining, and MHC class I tetramer staining. Similarly $gB_{498-505}$ DNA prime-gBw DNA (DNA vaccine expressing entire Ag) boost immunization elicited the strongest CD8+ T cell responses in protocols based on DNA vaccine. However, the level of CD8+ T cell-mediated immunity induced with prime-boost vaccination using DNA vaccine expressing epitope or entire Ag was inferior to those based on vvgBw and $vvgB_{498-505}$. Of particular interest CD8+ T cell-mediated immunity was optimally induced when $vvgB_{498-505}$ was used to prime and gB DNA was used as alternative boost. Especially CD7+ T cell responses induced by such protocol was longer lasted than other protocols. Conclusion: These facts direct to search for the effective strategy to induce optimal CD8+ T cell-mediated immunity against cancer and viral infection.