• Title/Summary/Keyword: Vaccine strategy

Search Result 89, Processing Time 0.03 seconds

Distribution Strategy: Lessons from the United States COVID-19 Vaccine Distribution

  • KIM, Dongho;YOUN, Myoung-Kil
    • Journal of Distribution Science
    • /
    • v.19 no.8
    • /
    • pp.5-12
    • /
    • 2021
  • Purpose: The purpose of this paper is to analyze and examine the issues that are directly associated with the United States COVID-19 vaccine distribution and its strategies so that other countries may learn from it and develop sound distribution strategies. Research design, data and methodology: This paper has applied both historical and narrative models to review, identify, and analyze existing literatures to assess the United States' vaccine distribution strategy. Results: Distribution strategy developed by the United States seems to have focused heavily on the basic tenets of physical distribution, i.e., transportation, warehousing, inventory, and large-venue mass-vaccination sites, and the strategy seems to have been successful when looking only at the physical tenets of distribution. However, the analysis indicates that the distribution strategy has not either focused on or included the major activities of distribution, such as inward and outward communication, information, and customer satisfaction. Conclusions: The countries that are currently developing or implementing COVID-19 vaccine distribution strategy should review and learn from the United States' vaccine distribution strategy and its implementation. The countries should include and address all the activities of distribution, including inward and outward communication, information, and customer satisfaction to achieve their vaccination goals, minimize confusion, reduce wasting of doses and vaccine desserts, and improve vaccination rates.

A "Prime and Deploy" Strategy for Universal Influenza Vaccine Targeting Nucleoprotein Induces Lung-Resident Memory CD8 T cells

  • Haerynn Chung;Eun-Ah Kim;Jun Chang
    • IMMUNE NETWORK
    • /
    • v.21 no.4
    • /
    • pp.28.1-28.14
    • /
    • 2021
  • Lung-resident memory T cells (TRM) play an essential role in protecting against pulmonary virus infection. Parenteral administration of DNA vaccine is generally not sufficient to induce lung CD8 TRM cells. This study investigates whether intramuscularly administered DNA vaccine expressing the nucleoprotein (NP) induces lung TRM cells and protects against the influenza B virus. The results show that DNA vaccination poorly generates lung TRM cells and massive secondary effector CD8 T cells entering the lungs after challenge infection do not offer sufficient protection. Nonetheless, intranasal administration of non-replicating adenovirus vector expressing no Ag following priming DNA vaccination deploys NP-specific CD8 TRM cells in the lungs, which subsequently offers complete protection. This novel 'prime and deploy' strategy could be a promising regimen for a universal influenza vaccine targeting the conserved NP Ag.

Update in varicella vaccination (수두백신의 최신지견)

  • Oh, Sung Hee
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.3
    • /
    • pp.229-234
    • /
    • 2006
  • Varicella, which is mostly a benign disease, but also can cause considerable health burden in the community, can be prevented by immunization with live attenuated varicella vaccine. Higher uptake of varicella vaccine by universal immunization in North America has apparently been associated with decline in the number of reported cases of varicella, varicella-related hospitalizations, and the number of deaths caused by complications of varicella. On the contrary, there has been some reluctance in endorsing varicella vaccine for universal immunization in most of European countries. Concerns include unanticipated outbreaks of varicella among vaccine recipients, risk of varicella among unvaccinated adults, risk of herpes zoster among vaccinees as well as unvaccinees. Recently developed measles, mumps, rubella, and varicella combination vaccine and herpes zoster vaccine that may be licensed in the upcoming years may be the solution for varicella vaccine to be utilized in a greater scale. In Korea several varicella vaccine products have been utilized since late 1980. The adoption of varicella vaccine for universal immunization since 2005 along with the changing view in varicella prevention strategy mandates more studies for immunogenecity and efficacy of varicella vaccines as well as more surveillance to delineate the changes in epidemiology of varicella in Korea.

Current progress on development of respiratory syncytial virus vaccine

  • Chang, Jun
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.232-237
    • /
    • 2011
  • Human respiratory syncytial virus (HRSV) is a major cause of upper and lower respiratory tract illness in infants and young children worldwide. Despite its importance as a respiratory pathogen, there is currently no licensed vaccine for prophylaxis of HRSV infection. There are several hurdles complicating the development of a RSV vaccine: 1) incomplete immunity to natural RSV infection leading to frequent re-infection, 2) immature immune system and maternal antibodies of newborn infants who are the primary subject population, and 3) imbalanced Th2-biased immune responses to certain vaccine candidates leading to exacerbated pulmonary disease. After the failure of an initial trial featuring formalin-inactivated virus as a RSV vaccine, more careful and deliberate efforts have been made towards the development of safe and effective RSV vaccines without vaccine-enhanced disease. A wide array of RSV vaccine strategies is being developed, including live-attenuated viruses, protein subunit-based, and vector-based candidates. Though licensed vaccines remain to be developed, our great efforts will lead us to reach the goal of attaining safe and effective RSV vaccines in the near future.

Understanding COVID-19 Vaccine Acceptance Intention: An Emotion-focused and Problem-focused Coping Perspective (코로나-19 백신 수용의도에 관한 연구: 정서 중심적 대처와 문제 중심적 대처 관점을 중심으로)

  • Yoo, Joon Woo;Park, Heejun
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.643-662
    • /
    • 2023
  • Purpose: The purpose of this study was to understand an individuals' COVID-19 vaccine acceptance intention during the peak of the pandemic by utilizing the coping theory and technology threat avoidance theory (TTAT) as a framework. Specifically, we focused on understanding how inward and outward emotion-focused coping (EFC), such as psychological distancing and emotional support seeking, affect problem-focused behavior (PFC), which is vaccine acceptance. Furthermore, we investigate how the individuals' cognitive appraisal to- ward COVID-19, consisted of perceived threat and perceived avoidability act as an antecedent of EFC. Methods: A PLS-SEM analysis was conducted to find the causal relation between the variables. An online survey was conducted targeting vaccination recipients on April, 2021. Participants were asked about their perception toward the virus, their coping strategy, and vaccine acceptance intention. A total of 186 valid samples were collected and used for the analysis. Furthermore, to analyze the out-of-sample predictive power of the research model and ensure the generalizability of the results, a PLSpredict analysis was conducted. Results: The results of the PLS-SEM analysis show that perceived threat toward COVID-19 significantly affect an individuals' EFC strategy. Furthermore, both types of inward EFC (psychological distancing, wishful thinking) negatively affected vaccine acceptance intention. On the other hand, emotional support seeking, which is a type of outward EFC, positively affected vaccine acceptance. The result of the PLSpredict analysis confirms the generalizability of the PLS-SEM result. Conclusion: The results of our study could be utilized to decrease vaccine hesitancy and prevent global pandemics by accelerating and increasing vaccination. Our study provides several meaningful implications to researchers and practitioners regarding vaccine acceptance and threat coping behavior.

Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses

  • Cheol Gyun Kim;Won Kyong Kim;Narae Kim;Young Jin Pyung;Da-Jeong Park;Jeong-Cheol Lee;Chong-Su Cho;Hyuk Chu;Cheol-Heui Yun
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.47.1-47.16
    • /
    • 2023
  • Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.

Phage Particles as Vaccine Delivery Vehicles: Concepts, Applications and Prospects

  • Jafari, Narjes;Abediankenari, Saeid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8019-8029
    • /
    • 2016
  • The development of new strategies for vaccine delivery for generating protective and long-lasting immune responses has become an expanding field of research. In the last years, it has been recognized that bacteriophages have several potential applications in the biotechnology and medical fields because of their intrinsic advantages, such as ease of manipulation and large-scale production. Over the past two decades, bacteriophages have gained special attention as vehicles for protein/peptide or DNA vaccine delivery. In fact, whole phage particles are used as vaccine delivery vehicles to achieve the aim of enhanced immunization. In this strategy, the carried vaccine is protected from environmental damage by phage particles. In this review, phage-based vaccine categories and their development are presented in detail, with discussion of the potential of phage-based vaccines for protection against microbial diseases and cancer treatment. Also reviewed are some recent advances in the field of phagebased vaccines.

Impact of the COVID-19 vaccine booster strategy on vaccine protection: a pilot study of a military hospital in Taiwan

  • Yu-Li Wang;Shu-Tsai Cheng;Ching-Fen Shen;Shu-Wei Huang;Chao-Min Cheng
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • Purpose: The global fight against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has led to widespread vaccination efforts, yet the optimal dosing schedule for SARS-CoV-2 vaccines remains a subject of ongoing research. This study aims to investigate the effectiveness of administering two booster doses as the third and fourth doses at different intervals to enhance vaccine protection. Materials and Methods: This study was conducted at a military regional hospital operated by the Ministry of National Defense in Taiwan. A cohort of vaccinated individuals was selected, and their vaccine potency was assessed at various time intervals following their initial vaccine administration. The study participants received booster doses as the third and fourth doses, with differing time intervals between them. The study monitored neutralizing antibody titers and other relevant parameters to assess vaccine efficacy. Results: Our findings revealed that the potency of the SARS-CoV-2 vaccine exhibited a significant decline 80 days after the initial vaccine administration. However, a longer interval of 175 days between booster injections resulted in significantly higher neutralizing antibody titers. The individuals who received the extended interval boosters exhibited a more robust immune response, suggesting that a vaccine schedule with a 175-day interval between injections may provide superior protection against SARS-CoV-2. Conclusion: This study underscores the importance of optimizing vaccine booster dosing schedules to maximize protection against SARS-CoV-2. The results indicate that a longer interval of 175 days between the third and fourth doses of the vaccine can significantly enhance the neutralizing antibody response, potentially offering improved protection against the virus. These findings have important implications for vaccine distribution and administration strategies in the ongoing battle against the SARS-CoV-2 pandemic. Further research and largescale trials are needed to confirm and extend these findings for broader public health implications.

Vaccine Strategy That Enhances the Protective Efficacy of Systemic Immunization by Establishing Lung-Resident Memory CD8 T Cells Against Influenza Infection

  • Hyun-Jung Kong;Youngwon Choi;Eun-Ah Kim;Jun Chang
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.32.1-32.15
    • /
    • 2023
  • Most influenza vaccines currently in use target the highly variable hemagglutinin protein to induce neutralizing antibodies and therefore require yearly reformulation. T cell-based universal influenza vaccines focus on eliciting broadly cross-reactive T-cell responses, especially the tissue-resident memory T cell (TRM) population in the respiratory tract, providing superior protection to circulating memory T cells. This study demonstrated that intramuscular (i.m.) administration of the adenovirus-based vaccine expressing influenza virus nucleoprotein (rAd/NP) elicited weak CD8 TRM responses in the lungs and airways, and yielded poor protection against lethal influenza virus challenge. However, a novel "prime-and-deploy" strategy that combines i.m. vaccination of rAd/NP with subsequent intranasal administration of an empty adenovector induced strong NP-specific CD8+ TRM cells and provided complete protection against influenza virus challenge. Overall, our results demonstrate that this "prime-and-deploy" vaccination strategy is potentially applicable to the development of universal influenza vaccines.

Targeted Delivery of VP1 Antigen of Foot-and-mouth Disease Virus to M Cells Enhances the Antigen-specific Systemic and Mucosal Immune Response

  • Kim, Sae-Hae;Lee, Ha-Yan;Jang, Yong-Suk
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.157-162
    • /
    • 2013
  • Application of vaccine materials through oral mucosal route confers great economical advantage in animal farming industry due to much less vaccination cost compared with that of injection-based vaccination. In particular, oral administration of recombinant protein antigen against foot-and- mouth disease virus (FMDV) is an ideal strategy because it is safe from FMDV transmission during vaccine production and can induce antigen-specific immune response in mucosal compartments, where FMDV infection has been initiated, which is hardly achievable through parenteral immunization. Given that effective delivery of vaccine materials into immune inductive sites is prerequisite for effective oral mucosal vaccination, M cell-targeting strategy is crucial in successful vaccination since M cells are main gateway for luminal antigen influx into mucosal lymphoid tissue. Here, we applied previously identified M cell-targeting ligand Co1 to VP1 of FMDV in order to test the possible oral mucosal vaccination against FMDV infection. M cell-targeting ligand Co1-conjugated VP1 interacted efficiently with M cells of Peyer's patch. In addition, oral administration of ligand-conjugated VP1 enhanced the induction of VP1-specific IgG and IgA responses in systemic and mucosal compartments, respectively, in comparison with those from oral administration of VP1 alone. In addition, the enhanced VP1-specific immune response was found to be due to antigen-specific Th2-type cytokine production. Collectively, it is suggested that the M cell-targeting strategy could be applied to develop efficient oral mucosal vaccine against FMDV infection.