• 제목/요약/키워드: Vaccenic Acid

검색결과 33건 처리시간 0.02초

반추위내 서식하는 혼합곰팡이와 박테리아에 의한 Linoleic Acid 가수소화반응과 Stearic Acid 생산에 관한 연구 (Biohydrogenation of Linoleic Acid and Stearic Acid Production by Mixed Rumen Fungi and Bacteria)

  • 남인식
    • 미생물학회지
    • /
    • 제43권2호
    • /
    • pp.100-105
    • /
    • 2007
  • 홀스타인 건유우의 반추위에서 분리한 혼합 곰팡이에 첨가한 linoleic acid가 biohydrogenation 과정 중 생산되는 지방산의 농도와 종류를 측정하고, 최종 산물로 생산되는 지방산이 trans-11 vaccenic acid인지 stearic acid인지 조사하기 위하여 본 연구를 수행하였으며 결과는 다음과 같다. 반추위 혼합 박테리아 배양구에 linoleic acid 용액을 첨가한 결과, 배양 90분 이내에 100%의 linoleic acid가 stearic acid로 biohydrogenation되었다. 반면에 linoleic acid 용액을 반추위 혼합 곰팡이에 첨가한 결과 24시간 이내에 모든linoleic acid는 conjugated linoleic acid (cis-9, trans-11)와 trans-11 vaccenic acid로 biohydrogenation되었다. Linoleic acid가 함유된 혼합곰팡이 처리구는 배양시간이 증가할수록 stearic acid의 농도도 소량 증가하는 경향을 보였다. 또한 linoleic acid가 함유되지 않은 혼합곰팡이 대조구에서도 배양시간이 증가할수록 stearic acid 농도가 처리구와 비슷하게 증가하는 경향을 나타내었다. 그러나 혼합 박테리아의 linoleic acid 첨가구에서는 배양시간이 증가할수록 stearic acid의 농도가 급격하게 증가하는 것을 조사되어 반추위 혼합곰팡이의 stearic acid생산은 linoleic acid의 biohydrogenation과 무관하게 생산되는 것으로 조사되었다. 따라서 반추위 혼합 곰팡이에 의한 linoleic acid biohydrogenation의 최종 산물은 trans-11 vaccenic acid로 판단되며, 혼합 박테리아는 stearic acid로 나타났다.

Escherichia coli와 Bacillus subtilis의 인지질 생합성과 지방산 조성에 미치는 금속 화합물의 영향 (The Effect of Metal Compounds em Biosynthesis of Phospholipid and the Fatty Acid Composition in Escherichia coli and Bacillus subtilis)

  • 박혜경;이종삼;서광석
    • 한국산업보건학회지
    • /
    • 제4권1호
    • /
    • pp.43-70
    • /
    • 1994
  • The effects of potassium chromate (500ppm/500ppm), potassium dichromate (500ppm/500ppm), cobalt chloride (100ppm/10ppm), methylmercuric chloride (100ppm/10ppm) on the biosynthesis of phospholipid and their composition of fatty acids in E.coli and B.subtilis were analyzed. The contents of phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylglycerol, cardiolipin and total lipids in treatment with metal compounds were lower to compare with the control. The major fatty acid utilized for biosynthesis of phospholipid was palmitic acid in control of E.coli and B.subtilis. However, in treatment with metal compounds, changes of fatty acid composition utilized for phospholipid formation were as follows. In E.coli major fatty acids were palimitic acid (ave. 26.26%) and cis-vaccenic acid (ave. 10.94%) in treatment with potassium chromate, palmitic acid (ave. 31.41%/31.42%) and stearic acid (ave. 17.92%/19.41%) in treatment with potassium dichromate and cobalt chloride. And in treatment with raethylmercuric chloride, palmitic acid (ave. 26.66%), stearic acid (ave. 15.50%) and cis-vaccenic acid (ave. 20.59%) were used in phospholipid formation. In B.subtilis, the major fatty acid was palmitoleic acid (ave. 15.29% /10.22%) in treatment with potassium chromate and cobalt chloride, and stearic acid (ave. 16.01%) in treatment with potassium dichromate. On the other hand, cis-vaccenic acid (ave. 9.09%), palmitic acid (ave. 17.23%), stearic acid (ave. 6.66%), myristic acid (ave. 6.34%) and lauric acid (ave. 4.75%) were analyzed into major fatty acids in treatment with methylmercuric chloride. As shown in results, specific fatty acid pattern was came out in treatment with metal compounds according to bacteria and treatments.

  • PDF

Biohydrogenation Pathways for Linoleic and Linolenic Acids by Orpinomyces Rumen Fungus

  • Nam, I.S.;Garnsworthy, P.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권11호
    • /
    • pp.1694-1698
    • /
    • 2007
  • The objective of this study was to identify biohydrogenation pathways for linoleic, linolenic, oleic and stearic acids by Orpinomyces species of rumen fungus during in vitro culture. Biohydrogenation of linoleic acid produced conjugated linoleic acid (cis-9, trans-11 C18:2), which was then converted to vaccenic acid (trans-11 C18:1) as the end product of biohydrogenation. Biohydrogenation of linolenic acid produced cis-9, trans-11, cis-15 C18:3 and trans-11, cis-15 C18:2 as intermediates and vaccenic acid as the end product of biohydrogenation. Oleic acid and stearic acid were not converted to any other fatty acid. It is concluded that pathways for biohydrogenation of linoleic and linolenic acids by Orpinomyces are the same as those for group A rumen bacteria.

반추위에서 분리한 곰팡이의 Conjugated Linoleic Acid 생산과 ITS-1 영역의 염기서열 해석 (Isolation and Identification of Rumen Fungus and Its Produced Conjugated Linoleic Acid)

  • 남인식
    • 미생물학회지
    • /
    • 제43권2호
    • /
    • pp.111-115
    • /
    • 2007
  • 반추위에서 분리한 곰팡이(IS-13)의 conjugated linoleic acid 생산 과정을 조사하고conjugated linoleic acid를 생산하는 곰팡이를 동정하기 위하여 본 연구를 실시하였다. IS-13 곰팡이가 함유된 배양액에 linoleic acid를 첨가한 결과 linoleic acid는 배양 12시간 이내에 conjugated linoleic acid와 trans-11 vaccenic acid로 biohydrogenation되었다. IS-13 곰팡이의 동정은 internal transcribed spacer 1 영역(ITS1)을 sequence하여 GenBank 유래의 관련 23속(종)의 반추위 곰팡이와 비교하였다. IS-13 곰팡이의 ITS1의 length는 218 bp인 것으로 확인되었으며, 염기서열 분석 결과 Orpinomyces species와 98% 일치하여 반추위내 Orpinomyces species는 conjugated linoleic acid 생산에 깊이 관여하는 것으로 확인되었다. 연구결과 본 균주는 Orpinomyces 속에 속하는 균으로 동정되었다.

트랜스지방산이 건강에 미치는 영향 (Trans Fatty Acids and Health)

  • 서정희
    • Journal of Dairy Science and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.25-36
    • /
    • 2009
  • Trans fatty acids (TFAs), especially elaidic acid, formed during partial hydrogenation of vegetable oils have been shown to increase LDL-cholesterol (LDL-C) and decrease HDL-cholesterol (HDL-C), thereby increasing the LDL-C/HDL-C ratio and elevating the risk of cardiovascular disease. However, studies on the health effects of ruminant TFAs have suggested that these TFAs, which are primarily vaccenic acids, have no or inverse association with coronary heart disease. Thus, dietary recommendations or legislation for TFAs should consider the differences in the physiological effects of TFAs derived from various food sources. This present review recapitulates the progress in TFA research by analyzing recent epidemiological studies or intervention studies and comparing the cardiovascular health effects of industrially produced TFA and ruminant TFA.

  • PDF

Why is $\beta$-ketoacyl-ACP synthase II (FabF) is toxic in E. coli fatty acid biosynthesis\ulcorner

  • Lee, Hee-Jung;Cho, Kyoung-Hea;Choi, Keum-Hwa
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.217.2-217.2
    • /
    • 2003
  • In the type II system. there are two elongation enzymes in E. coli, FabB is well-known to its ability to elongate cis-3-decenoly-ACP (C10:1) in unsaturated fatty acid synthesis, whereas FabF is important for the thermal regulation of fatty acid composition by its ability to elongate palmitoleic acid to vaccenic acid. based on their genetic mutation anaylsis. Radiochemical enzyme assay was performed using myristoyl-ACP as a substrate, which is known for general substrate of FabB and FabF. (omitted)

  • PDF

Fatty Acid Profiles and Stearoyl-CoA Desaturase Gene Expression in Longissimus dorsi Muscle of Growing Lambs Influenced by Addition of Tea Saponins and Soybean Oil

  • Mao, H.L.;Wang, J.K.;Lin, J.;Liu, J.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권5호
    • /
    • pp.648-652
    • /
    • 2012
  • This study was conducted to determine the effects of dietary addition of tea saponins (TS) and soybean oil (SO) on fatty acid profile and gene expression of stearoyl-CoA desaturase (SCD) in longissimus dorsi (LD) muscle of growing lambs. Thirty-two Huzhou lambs were assigned to four dietary treatments in a $2{\times}2$ factorial arrangement with main effects of TS (0 or 3 g/d) and SO (0 or 30 g/kg of diet DM). The diet without additives was considered as NTNS (no TS or SO). After a feeding trial for 60 d, four lambs of each treatment were slaughtered to collect the samples of LD muscle. Percentage of trans-11 vaccenic acid was enhanced (p<0.05) in muscle of lambs fed TS and SO. The proportion of total conjugated linoleic acid (CLA) was increased (p<0.05) by SO, but decreased (p<0.05) by TS in LD muscle. The percentage of total saturated fatty acids in muscle was decreased (p<0.05) by addition of TS and SO, while addition of SO increased (p<0.05) the percentage of total polyunsaturated fatty acids. The ratio of cis-9, trans-11 CLA to tran-11 vaccenic acid was decreased (p<0.05) by TS, but increased (p<0.05) by SO. The same effects were observed in SCD mRNA expression. From these results it is indicated that including TS and SO in the diet of growing lambs affect the fatty acid profiles of LD muscle and that the proportion of cis-9, trans-11 CLA in the muscle influenced by TS and SO may be related to the SCD gene expression.

The Effect of Forage Level and Oil Supplement on Butyrivibrio fibrisolvens and Anaerovibrio lipolytica in Continuous Culture Fermenters

  • Gudla, P.;Ishlak, A.;Abughazaleh, A.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권2호
    • /
    • pp.234-239
    • /
    • 2012
  • The objective of this study was to evaluate the effects of forage level and oil supplement on selected strains of rumen bacteria believed to be involved in biohydrogenation (BH). A continuous culture system consisting of four fermenters was used in a $4{\times}4$ Latin square design with a factorial arrangement of treatments, with four 10 d consecutive periods. Treatment diets were: i) high forage diet (70:30 forage to concentrate (dry matter basis); HFC), ii) high forage plus oil supplement (HFO), iii) low forage diet (30:70 forage to concentrate; LFC), and iv) low forage plus oil supplement (LFO). The oil supplement was a blend of fish oil and soybean oil added at 1 and 2 g/100 g dry matter, respectively. Treatment diets were fed for 10 days and samples were collected from each fermenter on the last day of each period 3 h post morning feeding. The concentrations of vaccenic acid (t11C18:1; VA) and c9t11 conjugated linoleic acid (CLA) were greater with the high forage diet while the concentrations of t10 C18:1 and t10c12 CLA were greater with the low forage diet and addition of oil supplement increased their concentrations at both forage levels. The DNA abundance of Anaerovibrio lipolytica, and Butyrivibrio fibrisolvens vaccenic acid subgroup (Butyrivibrio VA) were lower with the low forage diets but not affected by oil supplement. The DNA abundance of Butyrivibrio fibrisolvens stearic acid producer subgroup (Butyrivibrio SA) was not affected by forage level or oil supplement. In conclusion, oil supplement had no effects on the tested rumen bacteria and forage level affected Anaerovibrio lipolytica and Butyrivibrio VA.

견과류의 지방산, 트리아실글리세롤, 토코페롤 및 파이토스테롤의 조성 연구 (Studies on the Content of Triacylglycerol Species, Tocopherols, and Phytosterols from the Selected Nuts)

  • 성민혜;류현경;이선모;이기택
    • 한국식품저장유통학회지
    • /
    • 제17권3호
    • /
    • pp.376-383
    • /
    • 2010
  • 견과류 중 sunflower seed, cashew nut, walnut, pistachio, pumpkin seed, ginkgo, hazel nut, pecan을 원료로 하여 지방산 조성 분석 및 sn-2 position 분석, triacylglycerol species의 분석, tocopherol, phytosterol 함량을 분석하였다. 조지방 함량은 hazel nut에서 약 39.60 wt%로 가장 높았으며, walnut 35.25 wt%, pistachio 30.22 wt% 등의 순이었다. GC에 의한 sn-2 위치의 지방산 조성 분석 결과, oleic acid의 함량이 많은 견과류는 cashew nut, pistachio, hazel nut, pecan 이였으며, 특히 ginkgo의 경우 특이적으로 oleic acid의 이성체인 vaccenic acid가 10.72 wt% 나타냄을 확인할 수 있었다. 반면, linoleic acid 등이 높은 견과류는 sunflower seed, walnut, pumpkin seed 이었다. 견과류들의 TAG species의 PN값은 40∼52 사이에 존재하였다. Tocopherol의 함량은 ginkgo, sunflower seed, pumpkin seed 등에서 각각 48.57, 38.35, 31.43 mg/100 g 순으로 높은 함량을 나타내었다. 또한 총 phytosterol의 경우 88.60∼947.20 mg/100 g 사이에 함량을 나타내었다.

은행종실유의 all $cis-{\Delta}^{5,11,14}-C_{20:3}$ 지방산 존재에 관한 연구 (Studies on the Presence of all $cis-{\Delta}^{5,11,14}-C_{20:3}$ Fatty Acid in the Seed Oils of Ginkgo)

  • 김성진;이경희;김연심;조용계
    • 한국응용과학기술학회지
    • /
    • 제10권1호
    • /
    • pp.57-65
    • /
    • 1993
  • The fatty acid, all $cis-{\Delta}^{5,11,14}-C_{20:3}$, in the Gingko nuts oils, was isolated and, purified by urea-adduct method, silver ion silica gel chromatography and HPLC equipped with reversed phase ${\mu}-Bondapak$ $C_{18}$ column. Its structural elucidation was conducted by IR and $^1H$-, $^{13}C$-NMR technique. The fatty acid composition of seed oils mainly consists of linoleic acid(37.73%), vaccenic acid(18.30%), oleic acid(15.18%), palmitic acid(3.37%), palmitoleic acid(3.37%) and ${\Delta}^5$ NMDB fatty acids(8.50%) in which all $cis-{\Delta}^{5,11,14}-C_{20:2}$ predominates.