• Title/Summary/Keyword: VSWR

Search Result 621, Processing Time 0.027 seconds

Design of Wideband Planar Inverted-F Antenna Using Two-Layer Patches and Modified Ground Structure (이중층 패치와 부분 제거된 접지면을 이용한 광대역 평판형 역 F 안테나의 설계)

  • Lee, Kwang-Jae;Lee, Young-Hee;Kang, Yeon-Duk;Lee, Taek-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1015-1022
    • /
    • 2007
  • In this paper, we proposed a wideband design of planar inverted-F antenna(PIFA) using two-layer, patches and modified ground structure. The antenna consists of two layer patches with common feed and modified ground plane to control resonance frequency and antenna input impedance. The measured bandwidth is 1,492 MHz(BW: 67.7 %, 1,457${\sim}2,949$ MHz) for VSWR<2, and 1,170 MHz(BW: 21 %, 4,970${\sim}$6,140 MHz) for VSWR<2.5. It covers service bands of DCS1800, DCS1900, UMTS(WCDMA), WiBro, WLAN(IEEE 802.11b), satellite DMB. WLAN(IEEE 802.11a) in Korea and radiation patterns shows constant figure with frequency change.

Design of a 2~18 GHz Wideband Cavity-Backed Spiral Antenna (2~18 GHz 광대역 캐비티 백 스파이럴 안테나 설계)

  • Cho, Jung-Rae;Park, Jin-Oh;You, Byung-Sek;Jeong, Un-Seob;Chung, Woo-Sung;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1166-1174
    • /
    • 2008
  • In this paper, design of a $2{\sim}18$ GHz wideband cavity-backed spiral antenna is investigated. Firstly, an arm pattern and a backing cavity of a cavity-backed spiral antenna are designed based on the design theory of an Archimedean spiral antenna as well as by using CST's MWS. VSWR, axial ratio, and HPBW(Half Power Beam Width) characteristics are considered in the simulation. Secondly, a Marchand coaxial balun is designed to meet the required VSWR within the frequency band of operation. Finally, the validity of these approaches is verified by comparing the simulated results with measured ones.

Design of Compact CPW-fed Slot Antenna Using Split-Ring Resonators (분할 링 공진기를 이용한 소형 CPW급전 슬롯 안테나 설계)

  • Park, Jin-Taek;Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2351-2358
    • /
    • 2014
  • In this paper, a design method for a compact CPW-fed slot antenna using SRRs is studied. The structure of the proposed slot antenna is a rectangular slot antenna loaded with SRR conductors inside the slot to reduce the antenna size. Optimal design parameters are obtained by analyzing the effects of the gap between the SRR conductors and slot, and the width of the SRR conductors on the input VSWR characteristic. The optimized compact slot antenna operating at 2.45 GHz band is fabricated on an FR4 substrate with a dimension of 36 mm by 30 mm. The length of the proposed compact slot antenna is reduced to 14.3% compared to that of a conventional rectangular slot antenna. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.4-2.49 GHz for a VSWR < 2, and measured gain of 2.3 dBi at 2.45 GHz.

CPW-Fed Super-wideband Semicircular-Disc-Shaped Dipole Antenna (CPW-급전 초광대역 반원-디스크-모양 다이폴 안테나)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.356-361
    • /
    • 2024
  • This paper deals with the design and fabrication of a coplanar waveguide (CPW)-fed super-wideband semicircular-disk-shaped dipole antenna operating in a frequency band of 2.4 GHz or higher. To feed the antenna, a CPW feed line was appended to the center of the lower arm of the semicircular-disk-shaped dipole antenna. For miniaturization, square patches were added to the ends of the two arms of the semicircular-disk-shaped dipole, whereas the slot width of the CPW feed line at the center of the dipole antenna was increased to improve impedance matching in the 5.4-6.3 GHz band. The simulated frequency band of the proposed antenna for a voltage standing wave ratio (VSWR) less than 2 was 2.369-30 GHz(170.7%), whereas the fabricated antenna was maintained VSWR less than 2 in the frequency range of 2.378-20 GHz when measured using a network analyzer operating up to 20 GHz so it can be applied as a super-wideband antenna for next-generation mobile communications.

L-Slot Microstrip Patch Antenna Design for LTE (LTE용 L형 슬롯 마이크로스트립 패치 안테나 설계)

  • Kwon, Jin-Young;Kim, Gab-Gi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.171-175
    • /
    • 2013
  • In this paper was The dielectric constant of 4.4 and thickness of 0.6mm FR-4 substrate were implanted including the L-Slot in microstrip patch antenna to design a microstrip patch antenna for LTE. The proposed antenna is $180{\times}180$ compact and $46{\times}36$ lightweight compared to existing antenna and This antenna can be used as transmission ommidirectional radiation pattern of propagation was compared to the input return loss than -10dB (VSWR 2:1) to allow communication from the resonant frequency band.

Wide Band Bow-Tie Slot Antenna with Dual Reflector (듀얼 반사판을 이용한 광대역 보우타이 슬롯 안테나)

  • Lee Jae-Sung;Lee Sang-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1352-1358
    • /
    • 2006
  • In this paper, we have fabricated and tested a broad band bow-tie slot antenna with dual reflector. If we put 1/2 length thin and long slot on a wide metal plate, the slot antenna radiates efficient and strong radio wave as same as 1/2 dipole antenna does. we made with bow-tie form slot which has wider broad band than normal rectangular slot. At first, we made and test a single reflector slot antenna. To enlarge the broad band, we inserted another reflection plate between the slot antenna and reflection plate. After the test, we could have known that the low band(VSWR<2.0) has about $22%(793MHz\sim992MHz)$, high band(VSWR<2.0) has about 61% (1626MHz\sim3064MHz).

Fabrication and measurement of a Weathercock-Shaped Microstrip patch Antenna with T-Slot for 5.25-GHz Band Wireless LAN (5.25GHz 무선 LAN을 위한 T-Slot Weathercock-Shaped 마이크로스트립 패치 안테나 설계 및 제작)

  • Choi Sun-Ho;Jeong Gyey-Teak;Lee Hwa-Choon;Kwak Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12A
    • /
    • pp.1183-1187
    • /
    • 2005
  • In this paper, a weathercock-shaped microstrip patch antenna for application in 5.25GHz band wireless LAN is designed and fabricated. To obtain sufficient bandwidth in VSWR<2, the T-slot is inserted on the patch, the coaxial probe source is used. The measured result of fabricated antenna obtained 350MHz or about $7.62\%$ bandwidth in VSWR<2 referenced to the center frequency, the gain of 5.25${\~}$6.70dBi. The experimental 3-dB beam width is shown to be broad across the pass band in azimuth and elevation at $80.32^{\circ}$ and $83.88^{\circ}$, in several.

Design of Tapered Slot Antenna for UWB Communications (UWB 통신을 위한 테이퍼드 슬롯 안테나 설계)

  • Kim, Sun-Woong;Choi, Dong-You
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.64-69
    • /
    • 2015
  • In this paper, we have proposed a tapered slot antenna for UWB communication system. The tapered slot antenna has directional radiation and broad bandwidth. Proposed tapered slot antenna is designed using Ansys Inc. HFSS and its VSWR, return los, and radiation pattern is analyzed. Operating band of the antenna were satisfied -10 dB S11 and $VSWR{\leq}2$ in 2.7 ~ 4.8 GHz band. The radiation pattern of the antenna is showed in E-plane (YZ plane) and the H-plane (XZ plane) and the highest gain of 7.3 dBi is seen at 4.5 GHz. Therefore, proposed tapered slot antenna has wide bandwidth characteristic and directional for location awareness.

A Broadband U-Slot Microstrip Antenna (광대역 특성을 갖는 U-슬롯 마이크로스트립 안테나)

  • 홍재표;이광호;김종규;이창순
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.4
    • /
    • pp.6-11
    • /
    • 2001
  • In this paper, the aperture-coupled U-slot microstrip patch antenna is studied for the bandwidth improvement. The aperture is used as a mechanism for coupling the radiating element to the microstrip feedline, and the aperture-coupled configuration provides the advantage of isolating spurious feed radiation by the use of common ground plane. Experimental results such as return loss, VSWR, radiation pattern and gain measurements are presented on the aperture-coupled U-slot microstrip patch antenna. The impedance bandwidth (VSWR≤2) of the antenna is 6.4% centered at 2.35GHz, and the average gain is 5.3 dBi.

  • PDF

KOMPSAT-2 Payload Downlink System Verification (아리랑 위성 2호 탑재체 하향링크 시스템 검증)

  • Lee, Jin-Ho;Kim, Hui-Seop;Cheon, Yong-Sik
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.108-113
    • /
    • 2006
  • This paper includes the test results of KOMPSAT-2 payload downlink system which were measured for the purpose of performance verification. The antenna beam patterns which indicates the status of the interface & antenna itself, were measured as well as the antenna VSWR. The checkout of the transponder & its spectrum was followed and this made sure that there was no spurious output distinguished. Finally a test for BER verification was conducted between satellite and receiving system for their compatibility through the antenna-to-antenna connection using an antenna hat. Verification tests for an RF system should be performed after relocation, integration and test for environments in order to make sure that no degradation happens.

  • PDF