• Title/Summary/Keyword: VSWR

Search Result 621, Processing Time 0.026 seconds

A Study on the Design of Microwave Low Noise Amplifier Using GaAs FET (GaAs FET를 이용한 저잡음증폭기 설계에 관한 연구)

  • 전광일;주창복;박정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.2
    • /
    • pp.101-107
    • /
    • 1986
  • Analysis and design procedure for the low noise amplifier design are presented. A Microwave low noise amplifier is designed and fabricated using packaged GaAs FET at the center frequency of 12GHa. The experimental results with respect to the noise figure and power gain are quite agreeable with the design specifications except that the input and output VSWR are slightly higher than the desingned.

  • PDF

RF protection technique of antenna tuning switch in all-off condition (전차단 상태에서 동작하는 안테나 튜닝스위치의 RF 보호기술)

  • Jhon, Heesauk;Lee, Sanghun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1567-1570
    • /
    • 2022
  • This paper, we presents a RF protection technique of antenna switch by improving the power handling capability in worst case environment mode for mobile phone applications without critical payment of circuit performances such as insertion loss, isolation and ACBV (AC breakdown voltage). By applying a additional capacitive path located in front of the antenna in cell-phone, it performs the effective reduction of input power in high voltage standing wave ratio (VSWR) condition. Under the all-path off condition which causes a high VSWR, it achieved 37.7dBm power handling level as high as 5.7dB compared to that of conventional one at 2GHz. In addition, insertion loss and isolation performances were 0.31dB and 42.72dB at 2 GHz, respectively which were almost similar to that of the conventional circuit. The proposed antenna switch was fabricated in 130nm CMOS SOI technology.

Improving Stability and Characteristic of Circuit and Structure with the Ceramic Process Variable of Dualband Antenna Switch Module (Dual band Antenna Switch Module의 LTCC 공정변수에 따른 안정성 및 특성 개선에 관한 연구)

  • Lee Joong-Keun;Yoo Joshua;Yoo Myung-Jae;Lee Woo-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.105-109
    • /
    • 2005
  • A compact antenna switch module for GSM/DCS dual band applications based on multilayer low temperature co-fired ceramic (LTCC) substrate is presented. Its size is $4.5{\times}3.2{\times}0.8 mm^3$ and insertion loss is lower than 1.0 dB at Rx mode and 1.2 dB at Tx mode. To verify the stability of the developed module to the process window, each block that is diplexer, LPF's and bias circuit is measured by probing method in the variation with the thickness of ceramic layer and the correlation between each block is quantified by calculating the VSWR In the mean while, two types of bias circuits -lumped and distributed - are compared. The measurement of each block and the calculation of VSWR give good information on the behavior of full module. The reaction of diplexer to the thickness is similar to those of LPF's and bias circuit, which means good relative matching and low value of VSWR, so total insertion loss is maintained in quite wide range of the thickness of ceramic layer at both band. And lumped type bias circuit has smaller insertion itself and better correspondence with other circuit than distributed stripline structure. Evaluated ceramic module adopting lumped type bias circuit has low insertion loss and wider stability region of thickness over than 6um and this can be suitable for the mass production. Stability characterization by probing method can be applied widely to the development of ceramic modules with embedded passives in them.

  • PDF

Analysis on Signal Flow Graph of Slotted LIne (Slotted Line의 Signal Flow Graph 해석)

  • 박기수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.6 no.3
    • /
    • pp.8-11
    • /
    • 1969
  • In the precision measurement of the voltage standing wave ratio (VSWR) or reflection coefficient by means of the slotted line technique, one of the important factors is the maximum error due to the discontinuities and multi-reflection in the slotted line. Particularly, this error becomes a critical factor when the VSWR or the reflection coefficient to be measured is very small. In this paper, the exact expression of this error is obtained by means of the Signal flow graph method.

  • PDF

KSTAR 토카막 RF 안테나의 부하와 VSWR

  • 한장민;주명희;최현정;홍봉근
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.577-582
    • /
    • 1997
  • KSTAR 토카막$^1$플라즈마의 전류구동을 위한 RF 안테나 설계시 최적 조건을 2차원 파동 코드와 안테나 모듀울(module)을 이용하여 연구하였다 최적 조건을 얻기 위해 플라즈마와 안테나 매개변수 각각에 대한 부하와 전압정재파비(VSWR)의 관계를 살펴보았다. 계산결과로부터, 송전선의 특성저항 $R_{c}$=50$\Omega$, 안테나 폴로이달(poloidal) 길이 $A_{pl}$ =1.0m, 안테나 사이의 간격 $w_{d}$=4$^{0}$ 근처에서 최적의 안테나 조건을 갖음을 알 수 있었다.

  • PDF

Analysis and Design of Waveguide Iris Polarizer for Rotation of Polarization Plane (편파면 회전을 위한 도파관 아이리스 편파기 설계 분석)

  • Yang, Doo-Yeong;Lee, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3201-3206
    • /
    • 2012
  • In this paper, the simplified design methodology for rotation of polarization plane using a square waveguide is proposed. In order to optimize the characteristics of $180^{\circ}$ polarizer operating from 14.3GHz to 14.8GHz in Ku-band, the modified mode matching method and piecewise power tower interpolation are applied to the polarizer design. The optimized results show that the frequency bandwidth in VSWR<2 has covered 500MHz in the Ku-band and phase difference between two orthogonal modes $TE_{10}$and $TE_{01}$ is $180^{\circ}{\pm}1^{\circ}$ in the range of 14.3GHz~14.8GHz. The cross polarization loss has obtained below 40dB and the insertion loss has 0.1dB in the passband. Therefore, the proposed polarizer is suitable for practical Ku-band system requiring the low VSWR and compact size.

A Design and Fabrication of Microstrip Patch Antenna for PCS band and IMT-2000 band (PCS 대역과 IMT-2000 대역 겸용 마이크로스트립 패치 안테나의 설계 및 제작)

  • Lee, Won-Hui;Choi, Kyung-Sik;Hur, Jung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.2
    • /
    • pp.108-116
    • /
    • 2002
  • In this paper, to improve bandwidth of microstrip antenna, we discussed the patch structure using dual patch and probe feed. To provide PCS service and IMT-2000 service simultaneous, a microstrip patch antenna needs impedance bandwidth of 22%. We propose wide-band microstrip path antenna without complexity. To analyze characteristics of microstrip patch antenna, we used Ensemble of commercial software. The microstrip patch antenna was designed, fabricated, and tuned. The result was that 500 ㎒(25.5%) of impedance bandwidth for VSWR 2,430 ㎒(21.9%) of impedance bandwidth for VSWR 1.5. The microstrip patch antenna has side lobe of -14 dB. The front to back ratio is 20 dB overall. The measured gain of the microstrip patch antenna is 5.2 dBi.

Design of Stacked Circular Microstrip Antenna for Mobile Communication Base Station (이동통신 기지국을 위한 적층된 원형 마이크로스트립 안테나 설계)

  • Kim, Nam-Hyeon;No, Gwang-Hyeon;Gang, Yeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.2
    • /
    • pp.83-90
    • /
    • 2000
  • In this paper, a stacked circular-disk microstrip 1${\times}$4 array antenna was designed and manufactured and tested to apply in next generation mobile communication, on IMT-2000 system(up-link: 1.885 GHz∼2.025 GHz, down-link: 2.11 GHz∼2.2 GHz) base station which has dual frequency, broadband and high-gain characteristics. The experimental results are as follows : resonant frequency of 1.885 GHz and 2.178 GHz VSWR (1.064 , 1.432), return loss (-30.19 dB , -24.99 dB), band width (VSWR<2) are 402 MHz, -3dB beam width at radiation pattern are ${\alpha}$E-16.8$^{\circ}$, ${\alpha}$H-69$^{\circ}$(1.885 GHz) and ${\alpha}$E-l5.2$^{\circ}$, ${\alpha}$H-51.5$^{\circ}$(2.178 GHz), gain(13.7 dBi∼15.21 dBi).

  • PDF

Design of Series-fed Dipole Pair Antenna Using Multiple Directors (다중 도파기를 사용한 직렬 급전 다이폴 쌍 안테나 설계)

  • Yeo, Junho;Park, Jin-Taek;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.471-472
    • /
    • 2015
  • In this paper, a design method for enhancing the gain of a series-fed dipole pair (SDP) antenna using mutiple directors is studied. Strip-type directors are located above the second dipole of the SDP antenna, and the variations of the input VSWR bandwidth and gain depending on the length of the second dipole and the number of directors are analyzed. The antenna is optimized to obtain gain > 8 dBi in the frequency range of 1.7-2.7 GHz, which has three directors in the optimum design. The optimized antenna is designed on an FR4 substrate with a dimension of 86.2 mm by 152.3 mm, and it has frequency bands of 1.67-2.79 GHz for a VSWR < 2 and 1.69-2.72 GHz for a gain > 8 dBi.

  • PDF

Design of an X-band patch array antenna for an energy saving system (절전센서용 X-밴드 대역 패치 어레이 안테나 설계)

  • Chae, Gyoo-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.125-129
    • /
    • 2010
  • This paper introduces an X-band microstrip patch array antenna that can be suitable for an energy saving system. The presented patch antenna comprises with 2-element linear array. The antenna is simulated using CST MWS and manufactured using FR-4(h=1.0mm, ${\varepsilon}r=4.4$). The estimated bandwidth, gain and beamwidth are 4%(VSWR$\leq$2), 6.3dBi and about 60o in elevation and 15o in azimuth, respectively. The antenna is fabricated and optimized based on the simulation result and installed on the backside of the sensor circuit and measured. The measured bandwidth, gain and beamwidth are 7%(VSWR$\leq$2), 4.8dBi and about 55o(El)/15o(Az), respectively.