DOI QR코드

DOI QR Code

Analysis and Design of Waveguide Iris Polarizer for Rotation of Polarization Plane

편파면 회전을 위한 도파관 아이리스 편파기 설계 분석

  • Yang, Doo-Yeong (Dept. of Telecommunication Engineering, Jeju National University) ;
  • Lee, Min-Soo (Dept. of Telecommunication Engineering, Daejin University)
  • 양두영 (제주대학교 통신공학과) ;
  • 이민수 (대진대학교 통신공학과)
  • Received : 2012.04.27
  • Accepted : 2012.07.12
  • Published : 2012.07.31

Abstract

In this paper, the simplified design methodology for rotation of polarization plane using a square waveguide is proposed. In order to optimize the characteristics of $180^{\circ}$ polarizer operating from 14.3GHz to 14.8GHz in Ku-band, the modified mode matching method and piecewise power tower interpolation are applied to the polarizer design. The optimized results show that the frequency bandwidth in VSWR<2 has covered 500MHz in the Ku-band and phase difference between two orthogonal modes $TE_{10}$and $TE_{01}$ is $180^{\circ}{\pm}1^{\circ}$ in the range of 14.3GHz~14.8GHz. The cross polarization loss has obtained below 40dB and the insertion loss has 0.1dB in the passband. Therefore, the proposed polarizer is suitable for practical Ku-band system requiring the low VSWR and compact size.

본 논문은 정방형 도파관을 이용하여 편파면을 회전시키는 편파기의 단순화된 설계법을 제안하였다. Ku 밴드 주파수인 14.3GHz~14.8GHz에서 동작하는 $180^{\circ}$ 편파기의 특성을 최적화하기 위하여, 개선된 모드정합법과 구분적 멱보간법을 편파기 설계에 적용하였다. 최적화 결과는 VSWR<2 인 범위의 Ku 밴드 주파수 대역에서 500MHz의 대역폭을 나타내었고, 직교모드 $TE_{10}$$TE_{01}$ 간에 위상차는 14.2GHz~14.8GHz 주파수 대역에서 $180^{\circ}{\pm}1^{\circ}$ 를 갖는다. 그리고 교차편파 손실은 40dB 이하이고, 통과대역의 삽입손실은 0.1dB 이다. 따라서 제안한 편파기는 낮은 VSWR과 소형의 크기가 요구되는 실질적인 Ku 밴드 시스템에 적용이 가능하다.

Keywords

References

  1. G. L. Ragan, Microwave Transmission Circuits, New York, 1965.
  2. P.A. Rizzi, Microwave Engineering Passive Circuits, New Jersey, Prentice-Hall, 1988.
  3. J. Uher and J. Bornemann, U. Rosenberg, Waveguide Components for Antenna Feed Systems: Theory and CAD, Artech House, 1993.
  4. G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures, Artech House, 1980.
  5. S. D. Seo, D. H. Kim, and D. Y. Yang, "Design of a Selectable Polarizer in Ku-band", Journal of Research Institute of Industrial Technology JNU, vol. 8, no. 2, pp. 5158, Dec. 1997.
  6. H. Patzelt and F. Arndt "Double-Plane Steps in Rectangular Waveguides and Their Applications for Transformers, Irises, and Filters", IEEE Transaction on. Microwave Theory and Technology, vol. 30, pp. 771-776, May 1982. https://doi.org/10.1109/TMTT.1982.1131135
  7. F. Arndt, U. Touchholke, and T. Wriendt, "Broadband Dual-depth E-Plane Corrugated Square Waveguide Polarizer", Electron Letters, vol. 20, no. 11, pp. 458-459, May 1984.
  8. U. Tucholcke, F. Arndt, and T. Wriendt, "Field Theory Design of Square Waveguide Iris Polarizers", IEEE Transaction on Microwave Theory and Technology , vol. 34, no. 1, pp. 156-160, Jan. 1986. https://doi.org/10.1109/TMTT.1986.1133293
  9. J. Bornemann and R. Vahldieck, "Characterization of a Class of Waveguide Discontinuities using a Modified $TE_{mn}^{x}$ mode Approach", IEEE Transaction on. Microwave Theory and Technology, vol. 38, pp. 1816-1822, Nov. 1990. https://doi.org/10.1109/22.64561
  10. D. Y. Yang and M. S. Lee, "Design of Broadband Corrugated Waveguide Polarizer", Korean Institute of Maritime Information and Communication Science, vol. 4, no. 1, pp. 89-96, Mar. 2000.