• Title/Summary/Keyword: VSI

Search Result 306, Processing Time 0.027 seconds

Simplified Model Predictive Control Method for Three-Phase Four-Leg Voltage Source Inverters

  • Kim, Soo-eon;Park, So-Young;Kwak, Sangshin
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2231-2242
    • /
    • 2016
  • A simplified model predictive control method is presented in this paper. This method is based on a future reference voltage vector for a three-phase four-leg voltage source inverter (VSI). Compared with the three-leg VSIs, the four-leg VSI increases the possible switching states from 8 to 16 owing to a fourth leg. Among the possible states, this should be considered in the model predictive control method for selecting an optimal state. The increased number of candidate switching states and the corresponding voltage vectors increase the calculation burden. The proposed technique can preselect 5 among the 16 possible voltage vectors produced by the three-phase four-leg voltage source inverters, based on the position of the future reference voltage vector. The discrete-time model of the future reference voltage vector is built to predict the future movement of the load currents, and its position is used to choose five preselected vectors at every sampling period. As a result, the proposed method can reduce calculation load by decreasing the candidate voltage vectors used in the cost function for the four-leg VSIs, while exhibiting the same performance as the conventional method. The effectiveness of the proposed method is demonstrated with simulation and experiment results.

A Study on Double Band Hysteresis Current Control based on 3-Level Inverter to reduce the harmonic component in output current of FACTS devices (FACTS 기기의 고조파 저감을 위한 이중밴드 히스테리시스 전류 제어에 관한 연구)

  • Choi, Won-Kyoung;Choi, Jeong-Hye;Kim, Bum-Sik;Shin, Eun-Chul;Lee, Sang-Bin;Yoo, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.180-182
    • /
    • 2005
  • The current control using a conventional hysteresis controller of a STATCOM based on two level VSI (Voltage Source Inverter) has high switching frequency and variable modulation frequency. This will increase the switching loss. In addition, the current error is not strictly limited So, in this paper to reduce the switching frequency and to maintain the constant modulation frequency, a novel double band hysteresis current controller based on 3-level VSI is proposed. A conventional hysteresis current control and a novel hysteresis current control was tested with digital simulation and verified the advantage of the novel hysteresis current controller.

  • PDF

Peat stabilization using cement, polypropylene and steel fibres

  • Kalantari, Behzad;Prasad, Arun;Huat, Bujang B.K.
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.321-335
    • /
    • 2010
  • This article describes a laboratory research on stabilizing tropical peat using ordinary Portland cement (OPC) as a binding agent, and polypropylene and steel fibres as chemically inert additives. California bearing ratio (CBR) and unconfined compressive strength (UCS) tests were carried out to evaluate the increase in the strength of the stabilized samples compacted at their optimum moisture contents and air cured for up to 90 days. The results show that the UCS values of stabilized peat samples increased by as high as 748.8% by using OPC (5%), polypropylene fibres (0.15%), and steel fibres (2%). The CBR values of the samples stabilized with OPC (5%), polypropylene fibres (0.15%), and steel fibres (4%) showed an increase of as high as 122.7%. The stabilized samples showed a shrinkage in volume upon air curing and this shrinkage was measured by an index called, volume shrinkage index (VSI). The highest VSI recorded was 36.19% for peat without any additives; and the minimum was 0% for the sample containing 30% OPC, 0.15% polypropylene fibres and 2% steel fibres. The technique of stabilizing peat with OPC, polypropylene and fibres, coupled with air curing, appears to be cost-effective compared with other frequently used techniques.

Carrier-based Modulation Method for Matrix Converter (캐리어를 이용한 매트릭스 컨버터의 전압 변조 방법)

  • Yoon Young-Doo;Sul Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.543-549
    • /
    • 2005
  • This paper presents a carrier-based modulation method for the control of a matrix converter. By using the offset voltage and changing the slope of the carrier, it is possible to synthesize sinusoidal input currents with unity power factor and the desired output voltages. The proposed method is equivalent to the so called SVPWM (Space Vector PWM) method, but its implementation is much easier. Moreover, the proposed method is very attractive because it is possible to apply the 2 phase t 3 phase modulation method, overmodulation method and other methods which are well-developed in the study of voltage source inverters (VSI) to the matrix coverter modulation. The feasibility of the proposed modulation method has been verified by computer simulation and experimental results.

High-Performance Control of Three-Phase Four-Wire DVR Systems using Feedback Linearization

  • Jeong, Seon-Yeong;Nguyen, Thanh Hai;Le, Quoc Anh;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.351-361
    • /
    • 2016
  • Power quality is a critical issue in distribution systems, where a dynamic voltage restorer (DVR) is commonly used to mitigate the voltage disturbances for loads. This paper deals with a nonlinear control for the three-phase four-wire (3P-4W) DVR under a grid voltage unbalance and nonlinear loads in the distribution system, where a novel control scheme based on the feedback linearization technique is proposed. Through feedback linearization, a nonlinear model of a DVR with a PWM voltage-source inverter (VSI) and LC filters is linearized. Then, the controller design of the linearized model is performed by applying the linear control theory, where the load voltages are kept constant by controlling the d-q-0 axis components of the DVR output voltages. To keep the load voltage unchanged, an in-phase compensation strategy is employed, where the load voltages are recovered to be the same as the previous voltage without a change in the magnitude. With this strategy, the performance of the DVR becomes faster and more stable even under unbalanced source voltages and nonlinear loads. The validity of the proposed control strategy has been verified by simulation and experimental results.

Modeling and Control of a Grid Connected VSI using a Delta Connected LCL Filter ($\Delta$-결선 LCL 필터를 사용하는 삼상 계통 연계 인버터의 모델링과 제어)

  • Lee, Sang-In;Lee, Kui-Jun;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • There are two ways to connect an LCL filter in a grid-connected VSI. A wye connected LCL filter is general way, and the other is a delta connected LCL filter. While a model of a system with a wye connected LCL filter is calculated, a model of a system with a delta connected LCL filter is not formulated. Thus, we propose a mathematical model of a system with a delta connected LCL filter. Also, a comparative study of capacitor current harmonics of a delta connected LCL filter and a wye connected LCL filter is included. Experimental results exhibit that it is advantageous to control grid currents for a system with a delta connected LCL filter.

A Study on the New Controlled Method of the Inverter for Three Phase Induction Motor Drive (3상 유도전동기 구동을 위한 새로운 제어방식의 인버어터에 관한 연구)

  • Suh, Yoon-Chul;Kim, Young-Min;Park, Hyun-Chul;Lee, Seong-Ryong;Yu, Chul-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.336-338
    • /
    • 1996
  • Inverter is classified into voltage source and current source by the circuit's configuration. VSI (voltage source inverter) has the excellent generality, economical effects and high power-factors. CSI (current source inverter) is proper to frequent acceleration and deceleration of induction motor, the energy recovering accomplished to ac power line without any other device. But CSI inverter have some troubles such that the numbers of components are increased and the circuits are complicated. To solve these problems, a new inverter is proposed in this paper. This method gives protection of inverters when appears both an instantaneous load-open circuits and an instantaneous load-short circuits, and it has the both merits of both VSI and CSI.

  • PDF

Voltage Amplitude Control of Square-Wave VSIs with an R-L Load (R-L부하를 가진 구형파 VSI의 전압크기 제어)

  • Kim Kyung-Won;Hong Soon-Chan;Yoo Jong-Gul;Kim Sang-Kyun;Park Chae-Woon
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.479-482
    • /
    • 2001
  • This paper proposes a modified $\alpha$ conduction mode for controlling the output voltage magnitude of three-phase square-wave VSIs with an R-L load. From the viewpoint of both power capacity and switching losses, three-phase square-wave inverters are now used in most high power systems. When the square-wave VSI is driven with $\alpha$ conduction mode to control the magnitude of output voltages, interval over than half period is operated with $180^{\circ}$ conduction mode and the other interval with $120^{\circ}$ conduction mode. In $120^{\circ}$ conduction mode operation, two output terminals are connected to DC supply and the third one remains open. The potential of this open terminal will depend on the load characteristics and is unpredictable except the case of pure resistive loads. To cope this problem, we propose the modified α conduction mode.

  • PDF

Fault Detection and Compensation Scheme of Switch Open-fault in VSI for Two-phase Excitation Drive (2상 여자 구동용 전압형 인버터의 스위치 개방고장 검출 및 보상 기법)

  • Lee, Kui-Jun;Park, Nam-Ju;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.74-80
    • /
    • 2007
  • This paper proposes the novel open-fault detection/isolation scheme of inverter switch in two-phase excited VSI. This scheme identify open-fault using voltage sensor at lower switches of each phase according to the operating mode. It has benefit of simple implementation, fast detection and robustness in the load so that stab of the system is improved. Also, at faulty mode, it minimizes faulty effect and makes possible continuous operation through the reconfiguration procedure applying four-switch operation. The validity of proposed fault detection scheme is verified by experimental results.

Vertical isolation of a structure based on different states of seismic performance

  • Milanchian, Reza;Hosseini, Mahmood;Nekooei, Masoud
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.103-118
    • /
    • 2017
  • In vertical seismic isolation (VSI), a building is partitioned intentionally by vertical layers into two dynamically different substructures for seismic response reduction. Initially, a 1-story frame was partitioned into two substructures, interconnected by viscous and visco-elastic links, and seismic responses of the original and the vertically isolated structures (VIS) were obtained, considering a large number of stiffness and mass ratios of substructures with respect to the original structure. Color contour graphs were defined for presentation and investigation of large amounts of output results. Dynamic characteristics of the isolated structures were studied by considering the non-classical damping of the system, and then the effects of viscous and visco-elastic link parameters on the modal damping ratios were discussed. On this basis, three states of mass isolation, interactional state, and control mass were differentiated. Response history analyses were performed by Runge-Kutta numerical method. In these analyses, interaction of isolation ratios and link parameters, on response control of VIS was studied and the appropriate ranges for link parameters as well as the optimal ranges for isolation ratios were suggested. Results show that by using the VSI technique, seismic response reduction up to 50% in flexible substructure and even more in stiff substructure is achievable.