• Title/Summary/Keyword: VSC

Search Result 275, Processing Time 0.028 seconds

Variable Structure Control for Mechatronics Application (메카트로닉스에의 적용을 위한 가변구조제어)

  • Park, Jae-Sam;Chung, Byung-Tae
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.11a
    • /
    • pp.463-471
    • /
    • 1997
  • In this paper, a new variable structure controller (VSC) is presented. The presented VSC can be applicable to most mechatronic systems such as robotics. A VSC (or also called sliding mode control;SMC) algorithm is presented first, and next, a VSC with nonlinear integral control algorithms is presented. The algorithms use no linear approximation for the derivation of the control law or in the stability proof. It is shown that the robustness of the developed algorithms are guaranteed by the sliding mode control and that the algorithms are globally convergent.

  • PDF

Design of Robust Current Controller Using GA for Three Level 24-Pulse VSC Based STATCOM

  • Janaki, M.;Thirumalaivasan, R.;Prabhu, Nagesh
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.375-380
    • /
    • 2011
  • A STATic synchronous COMpensator (STATCOM) is a shunt connected voltage source converter (VSC) based FACTS controller using Gate Turn Off (GTO) power semiconductor devices employed for reactive power control. The operation principal is similar to that of a synchronous condenser. A typical application of a STATCOM is voltage regulation at the midpoint of a long transmission line for the enhancement of power transfer capability and/or reactive power control at the load centre. This paper presents the modeling of STATCOM with twenty four pulse three level VSC and Type-1 controller to regulate the reactive current or the bus voltage. The performance is evaluated by transient simulation. It is observed that, the STATCOM shows excellent transient response to step change in the reactive current reference. While the eigenvalue analysis is based on D-Q model, the transient simulation is based on both D-Q and 3 phase models of STATCOM (which considers switching action of VSC).

Calculation of Losses in VSC-HVDC based on MMC Topology

  • Kim, Chan-ki;Lee, Seong-doo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.47-53
    • /
    • 2018
  • VSC technology is now well established in HVDC and is, in many respects, complementary to the older Line Commutated Converter (LCC) technology. Despite the various advantages of VSC technology, VSC HVDC stations have higher power losses than LCC stations. Although the relative advantages and disadvantages are well known within the industry, there have been very few attempts to quantify these factors on an objective basis. This paper describes methods to determine the operating losses of every component in the valve of VSC-HVDC system. The losses of the valve, including both conduction losses and switching losses, are treated in detail.

Design of Controller for Nonlinear Multivariable System Using Neural Network Sliding Surface (신경망 슬라이딩 곡면을 이용한 비선형 다변수 시스템의 제어기 설계)

  • Ku, Gi-Jun;Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2634-2638
    • /
    • 2009
  • The variable structure control(VSC) with sliding mode is the discontinuous control law in leads to undesirable chattering in practice. As a method solving this problem, in this paper, we propose a scheme of the VSC with neural network sliding surface. A neural network sliding surface with boundary layer is employed to solve discontinuous control law. The proposed controller can eliminate the chattering problem of the conventional VSC. The effectiveness of the proposed control scheme is verified by simulation results.

Frequency Stabilization Method for Grid Integration of Large-scale Centralized Wind Farms via VSC-HVDC Technology

  • Peng, Yanjian;Li, Yong;Liu, Fang;Xu, Zhiwei;Cao, Yijia
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.547-557
    • /
    • 2018
  • This work proposes a control method of frequency stabilization for grid integration of large-scale wind farms via the voltage source converter-based high-voltage direct current (VSC-HVDC) technology. First, the topology of grid integration of a large-scale wind farm via the VSC-HVDC link is provided, and simple control strategies for wind turbines, wind farm side VSC (WFVSC), and grid side VSC are presented. Second, a mathematical model between the phase angle of WFVSC and the frequency of the wind farm is established. The control principle of the large-scale wind power integrated system is analyzed in theory in accordance with the mathematical model. Third, frequency and AC voltage controllers of WFVSC are designed based on the mathematical model of the relationships between the phase angle of WFVSC and the frequency of the wind farm, and between the modulation index of WFVSC and the voltage of the wind farm. Corresponding controller structures are established by deriving a transfer function, and an optimization method for selecting the parameters of the frequency controller is presented. Finally, a case study is performed under different operating conditions by using the DIgSILENT/PowerFactory software. Results show that the proposed control method has good performance in the frequency stabilization of the large-scale wind power integrated system via the VSC-HVDC technology.

Design and Implementation of a Universal System Control Strategy Applicable to VSC-HVDC Systems

  • Zhao, Yue;Shi, Li-bao;Ni, Yi-xin;Xu, Zheng;Yao, Liang-zhong
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.225-233
    • /
    • 2018
  • This paper proposes a universal system control strategy for voltage source converter (VSC) based high voltage direct current (HVDC) systems. The framework of the designed control strategy consists of five layer structures considering the topology and control characteristics of the VSC-HVDC system. The control commands sent from the topmost layer can be transmitted to the next layer based on the existing communication system. When the commands are sent to each substation, the following transmission of commands between the four lower layers are realized using the internal communication system while ignoring the communication delay. This hierarchical control strategy can be easily applied to any VSC-HVDC system with any topology. Furthermore, an integrated controller for each converter is designed and implemented considering all of the possible operating states. The modular-designed integrated controller makes it quite easy to extend its operating states if necessary, and it is available for any kind of VSC. A detailed model of a VSC-HVDC system containing a DC hub is built in the PSCAD/EMTDC environment. Simulation results based on three operating conditions (the start-up process, the voltage margin control method and the master-slave control method) demonstrate the flexibility and validity of the proposed control strategy.

The change of oral volatile sulfur compounds(VSC) concentration after periodontal treatment (치주치료 후 구강 내 Volatile Sulfur Compounds(VSC)의 변화)

  • Kim, Sung-Hyun;Chae, Gyeong-Jun;Jung, Ui-Won;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung;Chai, Jung-Kyu;Kim, Chong-Kwan;Bang, Eun-Gyeong
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.653-659
    • /
    • 2006
  • Oral malodor may cause a significant social or psychological handicap to those suffering from it. Oral malodor has been correlated with the concentration of volatile sulfur compounds (VSC) produced in the oral cavity. Specific bacteria identified in the production of VSC have been reported and many of these bacteria are commonly suspected periodontal pathogens. The aim of this study was to estimate the change of the VSC concentration after periodontal treatment, Twenty subjects with probing depth $(PD)\;{\geq}5mm$ (experimental group) and 20 subjects with PD<5mm (control group) participated. VSC concentration measurement was made with gas chromatography. VSC concentration was measured at pre-treatment, 2 weeks after scaling and 1 month after periodontal treatment(root planning and flap operation). Maximum probing depth and bleeding on probing(BOP) were also examed at pretreatment and 1 month after periodontal treatment, The conclusions were as follow: 1. In the experimental group VSC concentration and CH3SH/H2S ratio were higher than control group. (p<0.05) 2. Both VSC concentration and CH3SH/H2S ratio showed decrease after periodontal treatment, But only CH3SH/H2S ratio after 1 month periodontal treatment was statistically significantly different from pre-treatment. (p<0.05) 3. CH3SH/H2S ratio tended to be on increase according to maximum probing depth and bleeding on probing. Periodontal disease could be a factor that caused oral malodor and oral malodor could be decreased after periodontal treatment.

A Study on the Relation Between the Robot System Dynamic Constraints and Variable Structure Control Parameters (로보트 시스템의 동력학적 제한 조건과 가변구조 제어 파라메타의 상관관계에 관한 연구)

  • Lee, Hong-Kyu;Lee, Bum-Hee;Choi, Keh-Kun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.70-78
    • /
    • 1989
  • In the control of the robot system using the variable structure control(VSC) method, up to these days the advantage of the VSC method has not been applied effectively because the parameters are selected arbitrarily by the existence condition of sliding mode without a precise analysis about the VSC parameters. This paper reveals the relation between dynamic constraints and the VSC parameters of robot system, and analyzes the effect on the trajectory of the joint angle and the hand when the analytical result of the relation is applied to the robot system control. The result of the analysis in this paper is applied effectively to the path tracking control and the trajectory planning using the VSC method.

  • PDF

The evaluation for the usability ofthe Varian Standard Couch modelingusing Treatment Planning System (치료계획 시스템을 이용한 Varian Standard Couch 모델링의 유용성 평가)

  • Yang, yong mo;Song, yong min;Kim, jin man;Choi, ji min;Choi, byeung gi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.77-86
    • /
    • 2016
  • Purpose : When a radiation treatment, there is an attenuation by Carbon Fiber Couch. In this study, we tried to evaluate the usability of the Varian Standard Couch(VSC) by modeling with Treatment Planning System (TPS) Materials and Methods : VSC was scanned by CBCT(Cone Beam Computed Tomography) of the Linac(Clinac IX, VARIAN, USA), following the three conditions of VSC, Side Rail OutGrid(SROG), Side Rail InGrid(SRIG), Side Rail In OutSpine Down Bar(SRIOS). After scan, the data was transferred to TPS and modeled by contouring Side Rail, Side Bar Upper, Side Bar Lower, Spine Down Bar automatically. We scanned the Cheese Phantom(Middelton, USA) using Computed Tomography(Light Speed RT 16, GE, USA) and transfer the data to TPS, and apply VSC modeled previously with TPS to it. Dose was measured at the isocenter of Ion Chamber(A1SL, Standard imaging, USA) in Cheese Phantom using 4 and 10 MV radiation for every $5^{\circ}$ gantry angle in a different filed size($3{\times}3cm^2$, $10{\times}10cm^2$) without any change of MU(=100), and then we compared the calculated dose and measured dose. Also we included dose at the $127^{\circ}$ in SRIG to compare the attenuation by Side Bar Upper. Results : The density of VSC by CBCT in TPS was $0.9g/cm^3$, and in the case of Spine Down Bar, it was $0.7g/cm^3$. The radiation was attenuated by 17.49%, 16.49%, 8.54%, and 7.59% at the Side Rail, Side Bar Upper, Side Bar Lower, and Spine Down Bar. For the accuracy of modeling, calculated dose and measured dose were compared. The average error was 1.13% and the maximum error was 1.98% at the $170^{\circ}beam$ crossing the Spine Down Bar. Conclusion : To evaluate the usability for the VSC modeled by TPS, the maximum error was 1.98% as a result of compassion between calculated dose and measured dose. We found out that VSC modeling helped expect the dose, so we think that it will be helpful for the more accurate treatment.

  • PDF

VSC HVDC Site Selection Using Power Tracing (Power Tracing을 이용한 VSC HVDC 설치위치 선정)

  • Oh, Sea-Seung;Jang, Gil-Soo;Moon, Seung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.162-164
    • /
    • 2007
  • This paper presents a HVDC site selection algorithm to increase transfer capability using VSC HVDC system which can control active power as well as reactive power. Using normal powerflow results and simple index $k_r$ the HVDC site selection algorithm is enhanced and more tightly-coupled transmission lines are identified in a domain of generators.

  • PDF