• 제목/요약/키워드: VSC

검색결과 275건 처리시간 0.04초

메카트로닉스에의 적용을 위한 가변구조제어 (Variable Structure Control for Mechatronics Application)

  • Park, Jae-Sam;Chung, Byung-Tae
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 1997년도 추계학술대회 발표논문집:21세기를 향한 정보통신 기술의 전망
    • /
    • pp.463-471
    • /
    • 1997
  • In this paper, a new variable structure controller (VSC) is presented. The presented VSC can be applicable to most mechatronic systems such as robotics. A VSC (or also called sliding mode control;SMC) algorithm is presented first, and next, a VSC with nonlinear integral control algorithms is presented. The algorithms use no linear approximation for the derivation of the control law or in the stability proof. It is shown that the robustness of the developed algorithms are guaranteed by the sliding mode control and that the algorithms are globally convergent.

  • PDF

Design of Robust Current Controller Using GA for Three Level 24-Pulse VSC Based STATCOM

  • Janaki, M.;Thirumalaivasan, R.;Prabhu, Nagesh
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.375-380
    • /
    • 2011
  • A STATic synchronous COMpensator (STATCOM) is a shunt connected voltage source converter (VSC) based FACTS controller using Gate Turn Off (GTO) power semiconductor devices employed for reactive power control. The operation principal is similar to that of a synchronous condenser. A typical application of a STATCOM is voltage regulation at the midpoint of a long transmission line for the enhancement of power transfer capability and/or reactive power control at the load centre. This paper presents the modeling of STATCOM with twenty four pulse three level VSC and Type-1 controller to regulate the reactive current or the bus voltage. The performance is evaluated by transient simulation. It is observed that, the STATCOM shows excellent transient response to step change in the reactive current reference. While the eigenvalue analysis is based on D-Q model, the transient simulation is based on both D-Q and 3 phase models of STATCOM (which considers switching action of VSC).

Calculation of Losses in VSC-HVDC based on MMC Topology

  • Kim, Chan-ki;Lee, Seong-doo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권2호
    • /
    • pp.47-53
    • /
    • 2018
  • VSC technology is now well established in HVDC and is, in many respects, complementary to the older Line Commutated Converter (LCC) technology. Despite the various advantages of VSC technology, VSC HVDC stations have higher power losses than LCC stations. Although the relative advantages and disadvantages are well known within the industry, there have been very few attempts to quantify these factors on an objective basis. This paper describes methods to determine the operating losses of every component in the valve of VSC-HVDC system. The losses of the valve, including both conduction losses and switching losses, are treated in detail.

신경망 슬라이딩 곡면을 이용한 비선형 다변수 시스템의 제어기 설계 (Design of Controller for Nonlinear Multivariable System Using Neural Network Sliding Surface)

  • 구기준;조현섭
    • 한국산학기술학회논문지
    • /
    • 제10권10호
    • /
    • pp.2634-2638
    • /
    • 2009
  • 슬라이딩 모드를 가진 가변 구조 제어(VSC)에서의 불연속적인 제어 법칙은 실제로 바람직하지 못한 떨림 현상을 발생시킨다. 본 논문에서는 이러한 문제점을 해결하기 위해 신경망 슬라이딩 곡면을 갖는 VSC 구조를 제안한다. 불연속 제어 법칙을 해결하기 위해 경계층을 가진 신경망 슬라이딩 곡면이 도입된다. 제안된 제어기는 보편적인 VSC의 떨림 현상 문제를 해결할 수 있다. 제안된 제어 구조의 효과는 시뮬레이션을 통해 증명하였다.

Frequency Stabilization Method for Grid Integration of Large-scale Centralized Wind Farms via VSC-HVDC Technology

  • Peng, Yanjian;Li, Yong;Liu, Fang;Xu, Zhiwei;Cao, Yijia
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.547-557
    • /
    • 2018
  • This work proposes a control method of frequency stabilization for grid integration of large-scale wind farms via the voltage source converter-based high-voltage direct current (VSC-HVDC) technology. First, the topology of grid integration of a large-scale wind farm via the VSC-HVDC link is provided, and simple control strategies for wind turbines, wind farm side VSC (WFVSC), and grid side VSC are presented. Second, a mathematical model between the phase angle of WFVSC and the frequency of the wind farm is established. The control principle of the large-scale wind power integrated system is analyzed in theory in accordance with the mathematical model. Third, frequency and AC voltage controllers of WFVSC are designed based on the mathematical model of the relationships between the phase angle of WFVSC and the frequency of the wind farm, and between the modulation index of WFVSC and the voltage of the wind farm. Corresponding controller structures are established by deriving a transfer function, and an optimization method for selecting the parameters of the frequency controller is presented. Finally, a case study is performed under different operating conditions by using the DIgSILENT/PowerFactory software. Results show that the proposed control method has good performance in the frequency stabilization of the large-scale wind power integrated system via the VSC-HVDC technology.

Design and Implementation of a Universal System Control Strategy Applicable to VSC-HVDC Systems

  • Zhao, Yue;Shi, Li-bao;Ni, Yi-xin;Xu, Zheng;Yao, Liang-zhong
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.225-233
    • /
    • 2018
  • This paper proposes a universal system control strategy for voltage source converter (VSC) based high voltage direct current (HVDC) systems. The framework of the designed control strategy consists of five layer structures considering the topology and control characteristics of the VSC-HVDC system. The control commands sent from the topmost layer can be transmitted to the next layer based on the existing communication system. When the commands are sent to each substation, the following transmission of commands between the four lower layers are realized using the internal communication system while ignoring the communication delay. This hierarchical control strategy can be easily applied to any VSC-HVDC system with any topology. Furthermore, an integrated controller for each converter is designed and implemented considering all of the possible operating states. The modular-designed integrated controller makes it quite easy to extend its operating states if necessary, and it is available for any kind of VSC. A detailed model of a VSC-HVDC system containing a DC hub is built in the PSCAD/EMTDC environment. Simulation results based on three operating conditions (the start-up process, the voltage margin control method and the master-slave control method) demonstrate the flexibility and validity of the proposed control strategy.

치주치료 후 구강 내 Volatile Sulfur Compounds(VSC)의 변화 (The change of oral volatile sulfur compounds(VSC) concentration after periodontal treatment)

  • 김성현;채경준;정의원;김창성;최성호;조규성;채중규;김종관;방은경
    • Journal of Periodontal and Implant Science
    • /
    • 제36권3호
    • /
    • pp.653-659
    • /
    • 2006
  • Oral malodor may cause a significant social or psychological handicap to those suffering from it. Oral malodor has been correlated with the concentration of volatile sulfur compounds (VSC) produced in the oral cavity. Specific bacteria identified in the production of VSC have been reported and many of these bacteria are commonly suspected periodontal pathogens. The aim of this study was to estimate the change of the VSC concentration after periodontal treatment, Twenty subjects with probing depth $(PD)\;{\geq}5mm$ (experimental group) and 20 subjects with PD<5mm (control group) participated. VSC concentration measurement was made with gas chromatography. VSC concentration was measured at pre-treatment, 2 weeks after scaling and 1 month after periodontal treatment(root planning and flap operation). Maximum probing depth and bleeding on probing(BOP) were also examed at pretreatment and 1 month after periodontal treatment, The conclusions were as follow: 1. In the experimental group VSC concentration and CH3SH/H2S ratio were higher than control group. (p<0.05) 2. Both VSC concentration and CH3SH/H2S ratio showed decrease after periodontal treatment, But only CH3SH/H2S ratio after 1 month periodontal treatment was statistically significantly different from pre-treatment. (p<0.05) 3. CH3SH/H2S ratio tended to be on increase according to maximum probing depth and bleeding on probing. Periodontal disease could be a factor that caused oral malodor and oral malodor could be decreased after periodontal treatment.

로보트 시스템의 동력학적 제한 조건과 가변구조 제어 파라메타의 상관관계에 관한 연구 (A Study on the Relation Between the Robot System Dynamic Constraints and Variable Structure Control Parameters)

  • 이홍규;이범희;최계근
    • 대한전자공학회논문지
    • /
    • 제26권3호
    • /
    • pp.70-78
    • /
    • 1989
  • 가변구조 제어방법을 이용하여 로보트 시스템을 제어하는데 있어서 현재까지는 가변구조 제어 파라메타에 대한 정확한 분석없이 슬라이딩 모드 존재조건 만을 고려하여 임의의 파라메타를 선정 사용하고 있기 때문에 가변구조 제어 방법의 장점을 최대로 활용하지 못하고 있다. 본 논문에서는 로보트 시스템 제어에 적용하여 조인트 각과 손의 궤적에 미치는 양향을 분석하였다. 본 논문에서 분석된 결과는 가변구조 제어 방법을 이용하여 경로 궤적계획을 하는데 효과적으로 활용될 수 있다.

  • PDF

치료계획 시스템을 이용한 Varian Standard Couch 모델링의 유용성 평가 (The evaluation for the usability ofthe Varian Standard Couch modelingusing Treatment Planning System)

  • 양용모;송용민;김진만;최지민;최병기
    • 대한방사선치료학회지
    • /
    • 제28권1호
    • /
    • pp.77-86
    • /
    • 2016
  • 목 적 : 방사선 치료 시 Carbon Fiber Couch에 의한 감약이 일어난다. 본 연구에서는 치료계획 시스템(Treatment Planning System: TPS)을 이용해 Varian사의 Varian Standard Couch(VSC)를 모델링 하여 유용성을 평가하고자 한다. 대상 및 방법 : 선형가속기(Clinac IX, VARIAN, USA)의 CBCT(Cone Beam Computed Tomography)를 이용하여 VSC의3가지 조건Side Rail Out Grid(SROG), Side Rail InGrid(SRIG), Side Rail In OutSpine Down Bar(SRIOS)로 스캔 한 후 TPS(Pinnacle9.8, Philips, USA)로 전송하여 Side Rail, Side Bar Upper, Side Bar Lower, Spine Down Bar를 Automatic Contouring하여 모델링 하였다. 전산화 단층촬영(Light Speed RT 16, GE, USA)으로 스캔 한 Cheese Phantom(Middelton, USA) 을 TPS로 전송하여 모델링 한 VSC를 적용하였다. 측정 점은 Cheese Phantom내의 Ion Chamber(A1SL, Standard imaging, USA)이며 Isocenter에 위치시켜 Energy(4, 10MV), Gantry Angle($5^{\circ}$간격으로 측정), Field Size($3{\times}3cm^2$, $10{\times}10cm^2$)에 변화를 주어 각 100MU의 동일한 조건에서 얻은 계산 값과 측정값을 비교하였으며 Side Bar Upper에 의한 감약을 비교하기 위해 SRIG조건에서 $127^{\circ}$를 포함하였다. 결 과 : CBCT를 이용해 얻은 VSC의 Density를 TPS에서 확인한 결과 $0.9g/cm^3$였으며 Spine Down Bar의 경우 $0.7g/cm^3$로 나타났다.Side Rail, Side Bar Upper, Side Bar Lower, Spine Down Bar에서 각 17.49%, 16.49%, 8.54%, 7.59%의 감약이 일어났으며모델링의 정확성을 평가하기 위해 계산 값과 측정값을 비교한 결과 평균 1.13%의 오차가 보였으며 Spine Down Bar를 지나는 $170^{\circ}beam$에서 1.98%로 가장 많은오차를 보였다. 결 론 : TPS이용해 모델링 한 VSC의 유용성을 평가하기 위해계산 값과 측정값을 비교한 결과 최대1.98%의 오차를 보였다. 방사선 치료계획 시 VSC를 모델링 하여 적용한다면선량에 대한 예측이 가능해 더욱 정확한 치료를 하는데 도움이 될 것으로 사료된다.

  • PDF

Power Tracing을 이용한 VSC HVDC 설치위치 선정 (VSC HVDC Site Selection Using Power Tracing)

  • 오세승;장길수;문승일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.162-164
    • /
    • 2007
  • This paper presents a HVDC site selection algorithm to increase transfer capability using VSC HVDC system which can control active power as well as reactive power. Using normal powerflow results and simple index $k_r$ the HVDC site selection algorithm is enhanced and more tightly-coupled transmission lines are identified in a domain of generators.

  • PDF