• Title/Summary/Keyword: VRLA Battery

Search Result 21, Processing Time 0.02 seconds

A Study on the Valve Regulated Lead-Acid Battery using Sulfuric Acid Gel Electrolyte for New Generation Substitution Energy (황산 겔 전해질을 사용한 차세대 대체에너지용 밀폐형 납축전지에 관한 연구)

  • Park, Keun-Ho;Ju, Chan-Hong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.164-173
    • /
    • 2004
  • The capacity and long life of gel electrolyte batteries is connected with gas recombination producting $PbO_2$ and Pb electrode. We prepared with sulfuric acid gel electrolyte to know gel characteristics per density to assemble valve regulated lead-acid (VRLA) batteries. We studied on actions of sulphuric acid gel electrolyte by measuring electrolyte dispersion using Brewster-angle microscope (BAM), charge-discharge cycle, and electrode structure using scanning election microscope (SEM). Sulphuric acid density 1.210 showed excellent gel dispersion in sol condition, electrode condition after fifty cycles in this study.

A Study on the Valve Regulated Lead-Acid Battery using Phosphoric Acid Gel Electrolyte (인산 겔 전해질을 사용한 밀폐형 납축전지에 관한 연구)

  • Ju, Chan-Hong;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.296-308
    • /
    • 2003
  • The capacity and long life of gel electrolyte batteries is connected with gas recombination producting $PbO_2$ and Pb electrode. We were prepared with phosphoric acid gel electrolyte to know gel characteristics per density to assemble VRLA batteries. We studied by measuring electrolyte dispersion using Brewster-angle microscope(BAM), charge-discharge cycle and electrode structure using scanning election microscope(SEM) per electrolyte density. As a results, phosphoric acid density 1.210 was excellent gel dispersion in sol condition, electrode condition after fifty cycles in this study.

Effects of Curing & Formation Conditions on the Capacity of Positive Plate for Automotive Vehicles VRLA Batteries (양극판의 숙성과 화성조건이 자동차용 VRLA 배터리 성능에 미치는 영향)

  • Jeong, Soon-Wook;Ku, Bon-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.83-91
    • /
    • 2016
  • We studied the effect of battery deep cycle according to the way of active materials formation and the creation condition of electrode material, 3BS ($3PbO{\cdot}PbSO_4{\cdot}H_2O$) and 4BS ($4PbO{\cdot}PbSO_4$), in order to develop the batteries for Idle Stop & Go system. During the curing with active materials of anode and cathode, we found that the final creased active material was deformed by temperature control and it effects the durability of batteries. AGM battery and Flooded battery with 3BS active materials have excellent initial performance. And AGM battery with 4BS active materials shows the lower performance relatively. To compare and analyze of the formation efficiency of active materials, we tested the formation chagging steps with 3 steps and 9 steps differently. The results are that AGM battery with 4BS active materials is better on initial performance than AGM battery with 3BS. After the comparison of durability by DOD 17.5% life test, AGM battery is more suitable than flooded battery for the ISG system which needs the frequent deep cycle. In conclusion, AGM battery is the most suitable for ISG system and the life performance shows 80% difference according to the way of formation and curing of AGM batteries.

A Study on the Pb-Ca-Sn Grid Alloy of Positive Plate in Lead-Acid Battery (납축전지에서 양극판의 Pb-Ca-Sn 그리드 합금에 관한 연구)

  • Ku, Bon-Keun;Jeong, Soon-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.518-524
    • /
    • 2008
  • In this study, positive plates of lead acid battery of Pb-Ca alloy and Pb-Ca-Sn alloy were fabricated and the mechanical characteristics of positive plates were measured. This study observed how the changes of content of Ca & Sn affect interface corrosion which is located in between grid & active materials and lead acid batteries as well. The mechanical characteristics of grid alloy is better when Ca is 0.05 wt.% then 0.1 wt.%. This study said that the corrosion rate between the active material based on the charge/discharge cycle of lead acid battery and grid interface is much faster than a grid which contains Sn. And furthermore, according to the study the rate 30 of Sn/Ca which is added to grid shows the best performance.

Implementation of Microgrid using Energy Storage System (에너지 저장장치를 이용한 마이크로그리드의 구현)

  • Lee, Kye-Byung;Son, Kwang-M.;Jang, Gil-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.248-254
    • /
    • 2010
  • This paper deals with implementation of the laboratory-scale microgrid using energy storage system. Also, this paper develops a simulation model of the microgrid with same parameters on the laboratory-scale microgrid using PSCAD/EMTDC. The experimental results show good agreement with the simulation results. This shows the validity of the simulation model. A valve regulated lead acid (VRLA) battery is used to store energy. Energy storage system with fast response is able to maintain power quality of sensitive load within the microgrid.

Development of the Real-Time Remote Battery Inspection System (실시간 원격 배터리 점검 시스템의 개발)

  • Lee, Jong-Hak;Kim, Hyung-Won;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2016
  • Uninterruptible power supplies are extensively used as backup power in various applications such as telecommunication systems, Internet data centers, hospitals, and military technologies. Some of these applications require a considerable number of batteries, and the maintenance of such batteries is critical for the reliability of a system. However, batteries are chemical energy storage devices that deteriorate over time and frequently inspecting their performance and suitability is difficult. A real-time remote battery inspection system that applies electrochemical impedance spectroscopy is proposed and implemented in this study. The proposed system consists of a small inspection circuit and software for control. The former is developed to monitor the impedance variation of the battery and to diagnose its state. The validity and feasibility of the proposed system is proven by experimental results.

State Estimation Technique for VRLA Batteries for Automotive Applications

  • Duong, Van Huan;Tran, Ngoc Tham;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.238-248
    • /
    • 2016
  • The state-of-charge (SOC) and state-of-health (SOH) estimation of batteries play important roles in managing batteries for automotive applications. However, an accurate state estimation of a battery is difficult to achieve because of certain factors, such as measurement noise, highly nonlinear characteristics, strong hysteresis phenomenon, and diffusion effect of batteries. In certain vehicular applications, such as idle stop-start systems (ISSs), significant errors in SOC/SOH estimation may lead to a failure in restarting a combustion engine after the shut-off period of the engine when the vehicle is at rest, such as at a traffic light. In this paper, a dual extended Kalman filter algorithm with a dynamic equivalent circuit model of a lead-acid battery is proposed to deal with this problem. The proposed algorithm adopts a battery model by taking into account the hysteresis phenomenon, diffusion effect, and parameter variations for accurate state estimations of the battery. The validity of the proposed algorithm is verified through experiments by using an absorbed glass mat valve-regulated lead-acid battery and a battery sensor cable for commercial ISS vehicles.

Low-Voltage-Stress AC-Linked Charge Equalizing System for Series-Connected VRLA Battery Strings

  • Karnjanapiboon, Charnyut;Jirasereeamornkul, Kamon;Monyakul, Veerapol
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.186-196
    • /
    • 2013
  • This paper presents a low voltage-stress AC-linked charge equalizing system for balancing the energy in a serially connected, valve-regulated lead acid battery string using a modular converter that consists of multiple transformers coupled together. Each converter was coupled through an AC-linked bus to increase the overall energy transfer efficiency of the system and to eliminate the problem of the unbalanced charging of batteries. Previous solutions are based on centralized and modularized topologies. A centralized topology requires a redesign of the hardware and related components. It also faces a high voltage stress when the number of batteries is expanded. Modularized solutions use low-voltage-stress, double-stage, DC-linked topologies which leads to poor energy transfer efficiency. The proposed solution uses a low-voltage stress, AC-linked, modularized topology that makes adding more batteries easier. It also has a better energy transfer efficiency. To ensure that the charge equalization system operates smoothly and safely charges batteries, a small intelligent microcontroller was used in the control section. The efficiency of this charge equalization system is 85%, which is 21% better than other low-voltage-stress DC-linked charging techniques. The validity of this approach was confirmed by experimental results.

A Study on the AGM Lead Acid Battery for Automotive Vehicles (자동차용 AGM 납축전지에 관한 연구)

  • Jeong, Soon-Wook;Ku, Bon-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.181-187
    • /
    • 2015
  • We found that we could manage the crystal size of active material by controlling the temperature on curing procedure which is one of the process to produce lead acid battery. The active material causes to improve initial efficiency and durability for the batteries. 3BS from the active materials after curing process is better for initial efficiency. 4BS is not good for the initial efficiency but is better than 3BS in durability by 48%. Accroding to our test results of DOD17.5% life test which is for evaluating of automobile applied ISG system, it is not suitable for flooded lead acid battery which is used for the normal automobil but it is proper to AGM lead acid battery.

A Study on the Effects of Semi-Gel Electrolyte in Electricity Storage Battery (Semi-Gel 전해액이 전력저장용 배터리에 미치는 영향에 관한 연구)

  • Jeong, Soon-Wook;Ku, Bon-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.193-198
    • /
    • 2012
  • The following results are from the test of semi-gel electrolyte to store energy efficiently and use advanced VRLA batteries by photovoltaic and wind power generation. Semi-Gel electrolyte with Silica 5% became Gel after 1 and half hour. It shows it is the most suitable time that the electrolyte can be absorbed into the separator and active material of plate to be gel. The test also says that semi-gel electrolyte shows the much better performance for low-rate discharge and the liquid electrolyte is good for high-rate discharge because the reaction rate of gel electrolyte is slower than liquid one for high-rate discharge performance. The test with DOD10% and DOD100% says that 5% silica electrolyte shows much better performance for life efficiency than liquid one. Because semi-gel electrolyte increase the efficiency of gas recombination at the chemical reaction of VRLA battery and it makes minimizing the reduction of electrolyte. Using the 5% silica electrolyte in order to improve the stroage efficiency and life performance for photovoltic and wind power generation, it causes improving by 4.8% for DOD100% and 20% for DOD10%.